Northwest Normal University Institutional Repository (NWNU_IR)
Retinal Vessel Segmentation based on Gated Skip-connection Network | |
Yun Jiang; Huixia Yao; Tongtong Cheng; Jing Gao | |
2021-12-02 | |
会议名称 | ICONIP 2021: International Conference on Neural Information Processing |
卷号 | 1516 |
期号 | 1 |
页码 | 731-738 |
会议日期 | 2021-12-08—2021-12-12 |
会议地点 | Bali, Indonesia |
摘要 | Semantic segmentation of the retinal vessels is a pivotal stage in the treatment of certain eye disorders. Efficient and accurate segmentation is a challenge for retinal vessel segmentation. In this article, we presented a technique which is based on a Gated Skip-connection Network (GS-CNN), which implements the simultaneous segmentation of retinal vessel. In GS-CNN, a novel skip-connection with gating is first used in extension path, which facilitates flow of information from down-sampling to up-sampling. Specifically, we use gated skip-connection between encoder and decoder to gate the lower-level information from the encoder. This can effectively remove noise and help the decoder to focus on processing the relevant boundary-related information. Secondly, multi-scale input images are constructed in UNet. Finally, we verified the GS-CNN on DRIVE, CHASE datasets. The experimental results proved the effectiveness of the GS-CNN |
关键词 | Deep convolutional neural work ,Retinal vessel segmentation ,Skip connection ,Gating mechanism |
学科领域 | 计算机科学技术 |
学科门类 | 工学 |
DOI | https://link.springer.com/chapter/10.1007/978-3-030-92307-5_85 |
资助项目 | 基于深度学习的视网膜图像分割及辅助诊断技术研究 |
语种 | 英语 |
会议类型 | 国际会议 |
发表状态 | 已发表 |
ISSN | 0306-3829 |
文献类型 | 会议论文 |
条目标识符 | https://ir.nwnu.edu.cn/handle/39RV6HYL/93749 |
专题 | 实体学院_计算机科学与工程学院 实体学院_教师教育学院 |
共同第一作者 | Yun Jiang |
作者单位 | Northwest Normal University |
第一作者单位 | 西北师范大学 |
第一作者的第一单位 | 西北师范大学 |
推荐引用方式 GB/T 7714 | Yun Jiang,Huixia Yao,Tongtong Cheng,et al. Retinal Vessel Segmentation based on Gated Skip-connection Network[C],2021:731-738. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
ICONIP-Yao2021_Chapt(3317KB) | 会议论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论