Northwest Normal University Institutional Repository (NWNU_IR)
Bi-SANet—Bilateral Network with Scale Attention for Retinal Vessel Segmentation | |
Yun Jiang; Huixia Yao; Zeqi Ma; Jingyao Zhang | |
2021-09-29 | |
发表期刊 | Symmetry-Basel |
ISSN | 2073-8994 |
卷号 | 13期号:10页码:1-15 |
摘要 | The segmentation of retinal vessels is critical for the diagnosis of some fundus diseases. Retinal vessel segmentation requires abundant spatial information and receptive fields with different sizes while existing methods usually sacrifice spatial resolution to achieve real-time reasoning speed, resulting in inadequate vessel segmentation of low-contrast regions and weak anti-noise interference ability. The asymmetry of capillaries in fundus images also increases the difficulty of segmentation. In this paper, we proposed a two-branch network based on multi-scale attention to alleviate the above problem. First, a coarse network with multi-scale U-Net as the backbone is designed to capture more semantic information and to generate high-resolution features. A multi-scale attention module is used to obtain enough receptive fields. The other branch is a fine network, which uses the residual block of a small convolution kernel to make up for the deficiency of spatial information. Finally, we use the feature fusion module to aggregate the information of the coarse and fine networks. The experiments were performed on the DRIVE, CHASE, and STARE datasets. Respectively, the accuracy reached 96.93%, 97.58%, and 97.70%. The specificity reached 97.72%, 98.52%, and 98.94%. The F-measure reached 83.82%, 81.39%, and 84.36%. Experimental results show that compared with some state-of-art methods such as Sine-Net, SA-Net, our proposed method has better performance on three datasets. |
关键词 | deep convolutional neural work retinal vessel segmentation scale attention bilateral network |
学科门类 | 工学 |
DOI | 10.3390/sym13101820 |
URL | 查看原文 |
收录类别 | SCIE |
语种 | 英语 |
资助项目 | 基于深度学习的视网膜图像分割及辅助诊断技术研究 |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000711491300001 |
出版者 | MDPI |
原始文献类型 | Article |
发表状态 | 已发表 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.nwnu.edu.cn/handle/39RV6HYL/93742 |
专题 | 实体学院_计算机科学与工程学院 |
共同第一作者 | Huixia Yao |
通讯作者 | Yun Jiang |
作者单位 | 西北师范大学 |
第一作者单位 | 西北师范大学 |
通讯作者单位 | 西北师范大学 |
第一作者的第一单位 | 西北师范大学 |
推荐引用方式 GB/T 7714 | Yun Jiang,Huixia Yao,Zeqi Ma,et al. Bi-SANet—Bilateral Network with Scale Attention for Retinal Vessel Segmentation[J]. Symmetry-Basel,2021,13(10):1-15. |
APA | Yun Jiang,Huixia Yao,Zeqi Ma,&Jingyao Zhang.(2021).Bi-SANet—Bilateral Network with Scale Attention for Retinal Vessel Segmentation.Symmetry-Basel,13(10),1-15. |
MLA | Yun Jiang,et al."Bi-SANet—Bilateral Network with Scale Attention for Retinal Vessel Segmentation".Symmetry-Basel 13.10(2021):1-15. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
BiSANet.pdf(3047KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yun Jiang]的文章 |
[Huixia Yao]的文章 |
[Zeqi Ma]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yun Jiang]的文章 |
[Huixia Yao]的文章 |
[Zeqi Ma]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yun Jiang]的文章 |
[Huixia Yao]的文章 |
[Zeqi Ma]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论