Application of Kernel Principal Component Analysis and Granger Cointegratance Algorithm in Accelerator Distribution Network
Kang, Shuai1; Zhou, Zhongzu2; Zhao, Jiang1; Yan, Shaohui1; Jiang, Xinwei1; Zhang, Shuxian1
2024
会议名称5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024
会议录名称2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024
页码1784-1789
会议日期May 29, 2024 - May 31, 2024
会议地点Hybrid, Nanjing, China
会议录编者/会议主办者IEEE
出版者Institute of Electrical and Electronics Engineers Inc.
摘要The big data platform for accelerator distribution network deals with a large amount of data every moment during operation. Collecting and analyzing these data to identify hidden causal relationships within system makes it possible to effectively locate the root cause of system faults and improve system maintenance efficiency. Applying the methods of Kernel Principal Component Analysis (KPCA) and Granger Cointegratance (GC) to this platform, we first collect relevant information on power quality of accelerator distribution network under different faults conditions in order to understand changes between information before and after fault. Then, the KPCA method is used to extract the features of a large amount of fault data. Finally, the GC algorithm is utilized to identify the causal relationships between data from different locations. This paper would provide a effectual method for analysis, discovery and optimization of causes of faults in the accelerator distribution network. © 2024 IEEE.
关键词Big data Fault detection Power quality Quality control Smart power grids Accelerator distribution network Causal relationships Data platform Faults detection Granger cointegratance Kernel fault detection Kernel principal component analyses (KPCA) Large amounts of data Principal-component analysis Smart grid
DOI10.1109/AINIT61980.2024.10581788
收录类别EI
语种英语
EI入藏号20243016749034
EI主题词Principal component analysis
EI分类号706.1 Electric Power Systems ; 706.1.2 Electric Power Distribution ; 723.2 Data Processing and Image Processing ; 913.3 Quality Assurance and Control ; 922.2 Mathematical Statistics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://ir.nwnu.edu.cn/handle/39RV6HYL/98797
专题实体学院_物理与电子工程学院
通讯作者Zhao, Jiang
作者单位1.School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China;
2.Electrical and Electromagnetic Compatibility Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
第一作者单位物理与电子工程学院
通讯作者单位物理与电子工程学院
第一作者的第一单位物理与电子工程学院
推荐引用方式
GB/T 7714
Kang, Shuai,Zhou, Zhongzu,Zhao, Jiang,et al. Application of Kernel Principal Component Analysis and Granger Cointegratance Algorithm in Accelerator Distribution Network[C]//IEEE:Institute of Electrical and Electronics Engineers Inc.,2024:1784-1789.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kang, Shuai]的文章
[Zhou, Zhongzu]的文章
[Zhao, Jiang]的文章
百度学术
百度学术中相似的文章
[Kang, Shuai]的文章
[Zhou, Zhongzu]的文章
[Zhao, Jiang]的文章
必应学术
必应学术中相似的文章
[Kang, Shuai]的文章
[Zhou, Zhongzu]的文章
[Zhao, Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。