Northwest Normal University Institutional Repository (NWNU_IR)
Application of Kernel Principal Component Analysis and Granger Cointegratance Algorithm in Accelerator Distribution Network | |
Kang, Shuai1; Zhou, Zhongzu2; Zhao, Jiang1; Yan, Shaohui1; Jiang, Xinwei1; Zhang, Shuxian1 | |
2024 | |
会议名称 | 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 |
会议录名称 | 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 |
页码 | 1784-1789 |
会议日期 | May 29, 2024 - May 31, 2024 |
会议地点 | Hybrid, Nanjing, China |
会议录编者/会议主办者 | IEEE |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
摘要 | The big data platform for accelerator distribution network deals with a large amount of data every moment during operation. Collecting and analyzing these data to identify hidden causal relationships within system makes it possible to effectively locate the root cause of system faults and improve system maintenance efficiency. Applying the methods of Kernel Principal Component Analysis (KPCA) and Granger Cointegratance (GC) to this platform, we first collect relevant information on power quality of accelerator distribution network under different faults conditions in order to understand changes between information before and after fault. Then, the KPCA method is used to extract the features of a large amount of fault data. Finally, the GC algorithm is utilized to identify the causal relationships between data from different locations. This paper would provide a effectual method for analysis, discovery and optimization of causes of faults in the accelerator distribution network. © 2024 IEEE. |
关键词 | Big data Fault detection Power quality Quality control Smart power grids Accelerator distribution network Causal relationships Data platform Faults detection Granger cointegratance Kernel fault detection Kernel principal component analyses (KPCA) Large amounts of data Principal-component analysis Smart grid |
DOI | 10.1109/AINIT61980.2024.10581788 |
收录类别 | EI |
语种 | 英语 |
EI入藏号 | 20243016749034 |
EI主题词 | Principal component analysis |
EI分类号 | 706.1 Electric Power Systems ; 706.1.2 Electric Power Distribution ; 723.2 Data Processing and Image Processing ; 913.3 Quality Assurance and Control ; 922.2 Mathematical Statistics |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://ir.nwnu.edu.cn/handle/39RV6HYL/98797 |
专题 | 实体学院_物理与电子工程学院 |
通讯作者 | Zhao, Jiang |
作者单位 | 1.School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China; 2.Electrical and Electromagnetic Compatibility Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China |
第一作者单位 | 物理与电子工程学院 |
通讯作者单位 | 物理与电子工程学院 |
第一作者的第一单位 | 物理与电子工程学院 |
推荐引用方式 GB/T 7714 | Kang, Shuai,Zhou, Zhongzu,Zhao, Jiang,et al. Application of Kernel Principal Component Analysis and Granger Cointegratance Algorithm in Accelerator Distribution Network[C]//IEEE:Institute of Electrical and Electronics Engineers Inc.,2024:1784-1789. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论