Northwest Normal University Institutional Repository (NWNU_IR)
An algorithmic model for recognizing healthy wheat seeds based on YOLOv8 | |
Wei, Dong; Liang, Xiyin | |
2024 | |
会议名称 | 3rd International Conference on Electronic Information Engineering, Big Data, and Computer Technology, EIBDCT 2024 |
会议录名称 | Proceedings of SPIE - The International Society for Optical Engineering |
卷号 | 13181 |
会议日期 | January 26, 2024 - January 28, 2024 |
会议地点 | Beijing, China |
会议录编者/会议主办者 | Academic Exchange Information Centre (AEIC) |
出版者 | SPIE |
摘要 | Seed quality is a key factor in wheat germination rate, total yield and other indicators, and is of great importance for food security. For a long time, wheat seed selection and breeding have been heavily dependent on manual experience selection, which is characterized by high labor costs, unstable detection accuracy and high subjectivity. In this paper, we propose a machine vision recognition algorithm model WSEED-YOLOV8 for healthy wheat seeds improved from YOLO V8, which significantly improves the model's ability to extract features for wheat seed categories and whether wheat seeds suffer from Sunn Pest (Eurygaster integriceps) damage by introducing Deformable Convolution V2 (DCNv2) and encapsulating it in the C2f_DCNv2 module instead of the second, third and fourth C2f modules in YOLO V8n. By introducing the Polarized Self Attention mechanism module, with a slight increase in the parameters, it reduces the omission of false detections in the case of dense stacking of wheat seeds in the same image; and by using the Shape Loss Shape-IoU function as the IoU calculation function of the bounding box, which improves the target detection ability in the case of tilted wheat placement. The experimental results show that the WSEED-YOLOV8 wheat healthy seed recognition algorithm model achieves a recognition precision of 95% on the same wheat seed dataset, which is 15.9% higher than the YOLO V8n baseline precision. An 11% improvement in recognition precision was achieved with a similar number of parameters as the YOLO V8s baseline. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
关键词 | Food supply Image enhancement Seed Wages Algorithm model Algorithmic model Deformable convolution v2 Germination rates Key factors Recognition algorithm Seed quality Sunn pest Wheat seeds YOLO v8 |
DOI | 10.1117/12.3031325 |
收录类别 | EI |
语种 | 英语 |
EI入藏号 | 20243216833544 |
EI主题词 | Image recognition |
EI分类号 | 821.4 Agricultural Products ; 822.3 Food Products ; 912.4 Personnel |
原始文献类型 | Conference article (CA) |
EISSN | 1996-756X |
ISSN | 0277-786X |
文献类型 | 会议论文 |
条目标识符 | https://ir.nwnu.edu.cn/handle/39RV6HYL/98796 |
专题 | 实体学院_物理与电子工程学院 |
通讯作者 | Liang, Xiyin |
作者单位 | College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou; 730070, China |
第一作者单位 | 物理与电子工程学院 |
通讯作者单位 | 物理与电子工程学院 |
第一作者的第一单位 | 物理与电子工程学院 |
推荐引用方式 GB/T 7714 | Wei, Dong,Liang, Xiyin. An algorithmic model for recognizing healthy wheat seeds based on YOLOv8[C]//Academic Exchange Information Centre (AEIC):SPIE,2024. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wei, Dong]的文章 |
[Liang, Xiyin]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wei, Dong]的文章 |
[Liang, Xiyin]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wei, Dong]的文章 |
[Liang, Xiyin]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论