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Abstract. The overtaking collision between two single and unidirectional dust acoustic waves in dusty
plasmas consisting of Boltzmann electrons and ions, and negative dust grains has been investigated by
PIC simulation method. The well-known physical phenomenon is that the larger soliton moves faster,
approaches the smaller one and after the overtaking collision both resume their original shape and speed
with different phase shifts. The merging amplitude of two solitons and phase shifts of solitons after collision
are given. These PIC results are compared with the overtaking collision of two-soliton solution (TSS) of KdV
equaiton obtained by Hirota bilinear method. Comparisons between two indicates that if the amplitude
of fast soliton is large enough or the amplitude of slow soliton is small enough, the simulation results are
consistent with the interaction of Hirota results.

1 Introduction

The study of nonlinear structures in various kinds of plas-
mas has become one of the most important topics in the
plasma physics due to their relevance in microwave trans-
mission [1–4], confinement fusion [5–9], and astrophysical
and space environments [10–13] such as asteroid zones,
comettails, interstellar medium, magnetosphere radio fre-
quency plasma discharge, planetary ring and lower part of
Earth’s ionosphere. In dusty plasmas, because of the pres-
ence of a high density of dust grains, there exist different
types of collective processes and new wave modes can be
exciting. One of these modes is the low-frequency dust
acoustic waves (DAWs), first time theoretically predicted
by Rao et al. [14], and then experiments were conducted to
investigate the DA waves [15]. During the past few years,
the many properties of DA modes have been extensively
studied [16–22].

Different plasma models appear owing to a delicate
balance between dispersion and nonlinearity, which results
in the generation of solitons. At present, interaction in
process of soliton propagation stands for one of the most
important and interesting nonlinear phenomenon in mod-
ern plasma researches. Zabusky and Kruskal [23] were first
to discuss that when solitons usually defined as a type of
solitary waves undergo a collision then they preserve their
shape and velocities after the collision. For the collision of
solitons, some phenomena have been observed in the lab-
oratory [24–26] and the same can be explained in the mul-
tiple solutions of nonlinear evolution equations which can
be obtained by various powerful transformation methods
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like the Hirota bilinear method [27], the inverse scattering
method [28], the Darboux transformation method [29,30],
the Bäcklund transformation method [31,32], etc. In a
one-(or quasi-one-) dimensional system, the solitons may
interact between them in two different ways. One is the
head-on collision of multi-solitons traveling in the opposite
directions, which has been widely investigated theoreti-
cally [33–38] and verified by experiments [39–41] and PIC
simulation method [42,43], and the other is the overtaking
collision of multi-solitons traveling in the same directions,
which has been mainly studied theoretically [44–47] and
was simply investigated by PIC method [48,49].

However, the overtaking collision properties of dust
acoustic solitary waves have not been further verified by
either experiment or the numerical simulation until now.
In this paper, we will study this question by two methods.
One is the Hirota bilinear method, the other is the PIC nu-
merical simulation. The Hirota method is the result of the
two-soliton solution of the KdV eqaution which is obtained
by the reductive perturbation method from the fluid dy-
namical equations. Therefore, it is the approximated re-
sult. The other one is the numerical experiment performed
by using the one-dimensional PIC simulation method to
study interaction between two solitary waves propagating
in the same direction. In simulation, it is noted that two
solitons with different amplitudes collide when the largest
one of them catches up with the smaller. The large (fast)
soliton has a positive phase shift and the small (slow) soli-
ton has a negative phase shift. The amplitude of two single
dust acoustic solitons merging and becoming one soliton
during the strongest interaction and the phase shifts of
KdV solitons during a collision are obtained. These results
are compared with the overtaking collision of two-soliton
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solution of KdV equation obtained by the Hirota bilinear
method. It is obvious that when the amplitude of fast soli-
ton is large enough or that of slow soliton is small enough,
the PIC simulation results are in good agreement with the
Hirota’s results.

The organization is shown as follows. In Section 2, the
KdV equation obtained by reductive perturbation method
and the two-soliton solution of KdV solitary wave by
Hirota bilinear method are given. In Section 3 the PIC
simulation method is presented. In Section 4, the PIC
simulation results are given. In additional, the compar-
isons between Hirota’s results and PIC calculation ones
are shown. In Section 5, the conclusions are given.

2 Hirota bilinear method

In order to study the overtaking collision of dust acoustic
solitary waves, we focus on the cold dust fluid model. The
one-dimensional dimensionless equations of the motion of
the system are: ∂nd

∂t + ∂(ndud)
∂x = 0, ∂ud

∂t + ud
∂ud

∂x = ∂φ
∂x ,

and ∂2φ
∂x2 = nd + νeβsφ − μe−sφ [50,51], where μ and ν are

the normalized ion and electron number densities, respec-
tively. β = Ti

Te
is the ratio of the ion and electron temper-

atures, s = 1
μ+νβ . Moreover, the following dimensionless

variables are adopted: r → r/λd, v → v/Cd, t → t/ω−1,
φ → φe/kbTeff and n → n/n0, where λd, Cd, ω and Teff

are Debye length, sound speed, frequency, and effective
temperature of dusty plasma, respectively.

According to reductive perturbation method (RPT),
we introduce the following stretched coordinates: ξ =
ε(lx − ct) and τ = ε3t. The dependent variables are
expanded around the equilibrium values in power of ε:
f = f0 + ε2f1 + ε4f2 + . . . In first order of ε, we obtain
nd1 = ud1 = −φ1. To the next higher order, we can obtain
the KdV equation:

∂φ1

∂τ
+ aφ1

∂φ1

∂ξ
+ b

∂3φ1

∂ξ3
= 0, (1)

where

a = − l

2
[
3 + s2

(
β2ν − μ

)]
, b =

l3

2
. (2)

The result of the Hirota method is obtained by the follow-
ing process: first, rewrite the KdV equation as:

∂φ
′

∂t′
− 6φ

′ ∂φ
′

∂x′ +
∂3φ

′

∂x′3 = 0, (3)

by using the transformations of

φ1 =
1
b

(
6b2

a

)3/5

φ
′
, ξ =

(
6b2

a

)1/5

x
′

(4)

and

τ =
1
b

(
6b2

a

)3/5

t
′
. (5)

Then the two-soliton solution of a KdV equation is as
follows in the experiment coordinate [52–55]:

φH = −8b

(
6b2

a

)−3/5

ε2

× g2
1f1 + g2

2f2 + 2(g2 − g1)2f1f2 + h
(
g2
2f

2
1f2 + g2

1f
2
2f1

)

(1 + f2 + f1 + hf1f2)
2

(6)

where

fi = e
2gi

(
4g2

i b
(

6b2
a

)−3/5
ε3t−

(
6b2
a

)−1/5
ε(x−t)+si

)

(i = 1, 2),
(7)

and

h =
(

g1 − g2

g1 + g2

)2

. (8)

If the initial positions of the two solitons satisfy s1 < s2,
we need g1 > g2 for the two solitons to collide and g1 and
g2 stand for amplitudes of two solitons. The phase shifts
for two solitons are

�xi = ±
(

6b2

a

)1/5 1
ε

1
gi

ln
g1 + g2

g1 − g2
(9)

where positive sign is for large soliton and negative sign
for small soliton.

3 Particle-in-cell method

The one-soliton solution of KdV equation in experimental
coordinates is

φ0 = φmsech2

⎡

⎣
x −

(
1 + u0ε2

l

)
t + δ0

D

⎤

⎦ , (10)

where

φm = 3
u0ε

2

a
, D =

2
l

√
b

u0ε2
. (11)

δ0 is a constant representing the initial position of solitary
wave.

We assume that there are two copropagating KdV soli-
tons labeled by 1 and 2, respectively. Initially, two solitons
propagate in the same direction, but with different speeds.
Later, the soliton with the higher speed overtakes the one
with slower speed. After the overtake process is over, there
are phase shifts for both solitons. In this paper, we will
use the PIC code [56] to simulate the Poisson-Boltzmann
equation by Particle Algorithm. The dusty particles are
treated as so-called “super-particles”(SPs) that are ki-
netic particles, while the electrons and ions are treated as
Boltzmann distributed background. Each SP has a weight
factor S that specifies the number of real particles it rep-
resents. During the PIC simulation, the simulation region
is divided into several grid cells where the field quantities
like density, potential, electric field are calculated at the
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grid points and the particle quantities like velocity, density
are calculated at the particle locations. Initially, the SPs
are distributed in phase space according to a chosen den-
sity distribution and velocity distribution to calculate the
charge density. Once is obtained, the Poisson-Boltzmann
equation will be solved numerically to derive the value of
E(x) at grid. If we identify each SP with a label p, and its
mass with mp, velocity with vp, charge with qp and posi-
tion with xp, the field imposed on each SP can be worked
out and each SP will be driven by electric field according
to Newton’s motion equations:

dxp

dt
= vp (12)

mp
dvp

dt
= qpE(x). (13)

These equations will be solved numerically via the leap-
frog algorithm. At last, the new position and velocity of
each SP are obtained, the procedure comes to repeat until
the simulation Completes.

The initial conditions are given as follows:

φ = φ01 + φ02, (14)

where

φ01 =
3u01ε

2
1

a
sech2

x − 1+ε2
1u01
l1

t + δ01

2
√

b/ (ε2
1l

2
1u01)

(15)

φ02 =
3u02ε

2
2

a
sech2

x − 1+ε2
2u02
l2

t + δ02

2
√

b/ (ε2
2l

2
2u02)

(16)

v = −φ01 −φ02 and n = 1−φ01 −φ02. The chosen param-
eters are: grid size dx = 0.02λd, time step dt = dx/1100,
the number of grid cell is NX = 110 000 and the number
of SPs in each grid is 50.

We will compare the results between the PIC method
and the Hirota method. For simplicity, we take l1 = l2 = 1
in equations (15) and (16). Suitable values of δ01 and δ02

are chosen in order that two solitary waves are far apart
initially.

4 Pic simulation results

Figure 1 shows the numerical results of the evolution of
two dust acoustic solitary waves in different times. Initial
amplitudes of colliding solitary waves are about |A1| =
0.823 and |A2| = 0.198, respectively. At the time t =
577.5 they collide, merge together and eventually form a
symmetric waveform with the amplitude |A| = 0.66378.
It is found that the merging amplitude is |A1 −A2| when
the amplitude of soliton 2 is small enough compared with
that of soliton 1, for example |A2| < 0.14, where A1 =
ε2
1φ1m and A2 = ε2

2φ2m, as shown in Figure 2. Moreover,
the dependence of the merging amplitude of two solitons
on both the initial amplitudes of two colliding solitons
is shown in Figure 3. It is noted that the amplitude of

Fig. 1. The waveforms of two colliding solitary waves, 1 and 2,
at different times in PIC simulation. β = 0.1, μ = 1.1 and
ν = 0.1.

Fig. 2. The dependence of the amplitude of the merged peak
in the colliding process on the amplitude of soliton 2 where the
amplitude of soliton 1 is fixed. The blue dots are PIC simula-
tion results, the dark yellow ones for linear results |A1 − A2|
and the red ones for the Hirota results.

the merged peak in colliding process increases with the
amplitude of soliton 1, but decreases with the amplitude
of soliton 2.

It also seems from Figure 1 that the larger ampli-
tude soliton moves with the larger speed. It will overtake
the smaller amplitude soliton, then both solitons approx-
imately remain their original shape and speed after the
overtaking collision is over. However, their trajectories ac-
quire phase shifts. The definitions of phase shifts of both
solitary waves are shown in Figure 4. It is obviously ob-
served that the fast soliton has a positive phase shift and
the slow soliton has a negative phase shift. It is also noted
from Figure 4 that two solitons move faster in PIC sim-
ulation than in Hirota method. However, if there is no
collision, the soliton 1 moves slower and soliton 2 moves
faster.
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Fig. 3. The amplitude of the merged peak in the colliding
process as a function of both amplitudes.

Fig. 4. The definition of the phase shifts of both solitary waves.
(a) the blue one for PIC simulation after collision, the Olive one
for soliton 1 at the same time but without collision in PIC and
the Magenta one for soliton 2 at the same time but without
collision in PIC. (b) The red line is the waveform of Hirota
result after collision at the same time.

The comparison of phase shifts between the Hirota re-
sults and numerical ones (both with the same initial con-
ditions) is shown in Figure 5, which gives the dependence
of phase shift Δx1 of soliton 1 on the amplitude |A2| of
soliton 2 for different amplitudes |A1| of soliton 1. It is
noted that both are in good agreement when the ampli-
tude of soliton 2 is small enough compared with soliton 1.
The differences of the phase shifts of soliton 1 between
the numerical results and the Hirota ones as a function of
the amplitudes of two solitons are shown in Figure 6. It is
clear that when the amplitude of soliton 1 is large enough
compared with soliton 2, the differences can be neglected.
That is to say, when the amplitude of soliton 1 is large
enough or the amplitude of soliton 2 is small enough, nu-
merical and Hirota results are consistent. In addition, it
is found from Figure 5 that the phase shift of soliton 1
is not only related with its amplitude but also the am-

Fig. 5. The phase shift of soliton 1 as a function of the ampli-
tude of soliton 2 for different amplitudes of soliton 1.

Fig. 6. The differences of the phase shifts of soliton 1 between
the numerical results and the Hirota ones as a function of both
the amplitudes.

plitude of soliton 2, which is consistent with the Hirota
results of equation (9). Then the dependencies of phase
shift of soliton 1 on both amplitudes are given in Figure 7.
It is obviously found that the phase shift of soliton 1 in-
creases with the increasing amplitude of soliton 2, but it
decreases with the increase of itself amplitude.

5 conclusions

In this paper, the overtaking collision between two sin-
gle and unidirectional dust acoustic waves in dusty plas-
mas consisting of Boltzmann electrons and ions, and neg-
ative dust grains has been investigated by PIC simulation
method. The well-known physical phenomenon is that the
larger soliton moves faster, approaches the smaller one
and after the overtaking collision both resume their origi-
nal shape and speed with different phase shifts. It is found
that the phase of the larger soliton will be pushed forward
and the smaller one will have a phase lag. The merging
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Fig. 7. The dependence of phase shifts of soliton 1 on both
amplitudes.

amplitude of two solitons and phase shifts of solitons are
given. It is found that the amplitude of the merged peak
and phase shift are all related with the amplitudes of two
solitons. These PIC results are compared with the over-
taking collision of two-soliton solution of KdV equation
obtained by Hirota bilinear method. Comparisons between
two indicates that if fast soliton is large enough or slow
soliton is small enough, the simulation results are in good
agreement with the Hirota results. Meanwhile, PIC simu-
lation provides a more realistic description of the dynam-
ics of nonlinear dust acoustic waves that can be usefully
applied to various low frequency phenomena observed in
laboratory as well as space plasmas. The results have po-
tential applications in the instability study of the space
plasmas, and the fusion plasmas. Maybe the results can
been realized and tested experimentally according to ref-
erences [41] and [57].
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