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Abstract
Theoretical investigations are carried out for the properties of small amplitude dust-acoustic solitary waves in plasmas
consisting of extremely massive, high negatively charged inertial dust grains, Boltzmann distributed electrons and trapped
ions, for one-dimensional case and three-dimensional case. An energy integral equation involving the Sagdeev potential is
derived. The dependence of the critical Mach number corresponding to maximum amplitude on other parameters is obtained.
It is observed that the magnitude of the external magnetic field has no effect on the amplitude of the solitary waves.
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1 Introduction

Dusty plasma, as mixtures of ordinary plasma particles and
charged dust grains, is thought to play an important role
in laboratory, astrophysical, and space environments, such
as planetary rings, cometary tails, the earth’s environment,
and interstellar medium [1–6]. Another important feature of
dusty plasma is its openness, as it cannot survive without
external forces and fluxes [7]. Dusty plasma supports two
kinds of acoustic modes [8]. The most well studied of such
modes is the so-called dust-acoustic wave (DAW) [9–11]
which was discovered since the inception of collective dust-
plasma interactions. This is a very low-frequency acoustic
mode in which the dust grains participate directly in the
wave dynamics [12–19].

Stationary vortex-like distribution is a solitary BGK [20,
21] solution. Define trapping parameter λ such that |λ| =
Tif /Tit , where Tif and Tit are the constant temperatures of
the free particles and trapped particles, respectively. When
trapping parameter λ < 0 vortex-like distribution exists [22,
23]. A vortex-like distribution of the relevant species can
give rise to a depression of the density [24].

The properties of DAW have been extensively studied in
dusty plasmas, especially with trapped particles. Mamun et
al. investigated the nonlinear propagation of dust-acoustic
waves in a magnetized dusty plasma with vortex-like ion
distribution [25] and the nonlinear propagation of dust-
acoustic waves in a strongly coupled liquid state dusty
plasma with a vortex-like ion distribution [26]. Nonlinear
propagation of dust-acoustic waves in an unmagnetized
dusty plasma with nonthermal electron and vortex-like
ion distribution has been showed by Paul et al. [27].
The instability of DAWs in magnetized vortex-like ion
distribution dusty plasmas has been studied [28]. The
instability of DAWs in weakly two-dimensional dust plasma
with vortex-like ion distribution [29] and the effect of
dust size distribution on the propagation of the DAWs
in vortex-like ion distribution dusty plasma have also
been showed [30]. DAWs in a dusty plasma with charge
fluctuation and dust size distribution and vortex-like ion
distribution have been presented by Roy Chowdhury [31].
The effects of dust temperature and trapped ions have been
incorporated in the study of DAWs by Alinejad [32]. The
problem of nonlinear variable charge dust-acoustic waves
in a dusty plasma with trapped ions has been revisited
by Younsi and Tribeche [33]. The nonlinear properties of
DAWs in a magnetized dusty plasma with two-temperature
trapped ions have been investigated by Bagchi et al. [34].
Nonlinear solitary oscillations in a varying charge dusty
plasma in the presence of nonisothermal trapped electrons
have been investigated by Tribeche et al. [35]. Effect of
deviations from isothermality of ions on arbitrary amplitude
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dust-acoustic solitary structures has been studied in an
unmagnetized dusty plasma which consists of extremely
massive, micron-sized, negatively charged inertial dust
grains, Boltzmann distributed electrons and ions with
trapped particles, by Alinejad [36], and it is found that the
basic properties (Mach number, amplitude, and width) of
the solitary structures change drastically due to the effect of
deviations from isothermality of ions, and the Mach number
increases with the maximum amplitude of solitary wave.

However, Alinejad only confined himself to the one-
dimensional case and studied the dependence of the Mach
number on the maximum amplitude of arbitrary solitary
waves. In this paper, both the one-dimensional case and
three-dimensional case for small amplitude waves will be
investigated in dusty plasma consisting of extremely mas-
sive, micron-sized, negatively charged inertial dust grains,
Boltzmann distibuted electrons and vortex-like ions. The
Sagdeev potential approach [37–43], which works for arbi-
trary amplitude solitary waves, has been employed to study
the relation of the critical Mach number corresponding to
the maximum amplitude of solitary waves with physical
quantities. It is observed that the magnitude of the external
magnetic field has no effect on the amplitude of the solitary
waves.

This paper is organized as follows: In Sections 2 and 3,
the basic equations are given. The discussion are given in
Section 4. Finally, the conclusion is provided in Section 5.

2 Basic Equations for One-dimensional Case

We consider a three-component plasma consisting of
extremely massive, high negatively charged inertial dust
grains, Boltzmann distributed electrons and ions trapped
particles. Charge neutrality at equilibrium requires that
ni0 = Zdnd0 + ne0, where ni0, ne0 and nd0 are
the unperturbed ion, electron and dust number densities
respectively, and Zd is the number of charges residing on
the surface of dust grains.

For one-dimensional case, the dynamics of the nonlinear
dust-acoustic waves (with phase lying between the ion and
dust thermal velocities) is governed by

∂nd

∂t
+ ∂

∂x
(ndud) = 0 (1)

∂ud

∂t
+ ud

∂ud

∂x
= ∂φ

∂x
(2)

∂2φ

∂x2
= nd + νeβφ − μni (3)

where nd is the dust particle number density normalized
to nd0, ni is the ion number density normalized to ni0, ud

is the dust fluid velocity normalized to the dust-acoustic

speed Cd = (ZdTif /md)1/2, and φ is the electrostatic wave
potential normalized to Tif /e, where Tif is the constant
temperature of the free ions, md is the mass of negatively
charge dust particulates and e is the magnitude of the
electron charge. β = Tif /Te, with Te being the electron
temperature, ν = s/(1 − s) and μ = 1/(1 − s), where
s = ne0

ni0
. The time and space variables are given in the units

of the dust plasma period ω−1
pd = (md/4πZ2

dnd0e
2)1/2 and

the Debye length λDd = (Tif /4πZdnd0e
2)1/2, respectively.

Here the electron inertia is neglected and Boltzmann
distribution for the electron density is assumed, which
implies isothermality. This expression is obtained by the
consideration that a thermal electron moves with a speed
much higher than the ion thermal speed. Thus, it would
not be much affected by the low-frequency dust-acoustic
waves. In this case, ions can interact with the wave potential
during its evolution, and therefore can be trapped in the
wave potential, leading to a departure from the Boltzmann
distribution functions.

To model an ion distribution with deviations from
isothermality of ions, we employ a vortex-like distribution
of Schamel [20, 44, 45], which solves the ion Vlasov
equation. Thus we have fi = fif + fit , where

fif = 1√
2π

e−(1/2)(v2+2φ)|v| >
√−2φ (4)

fit = 1√
2π

e−λ(1/2)(v2+2φ)|v| ≤ √−2φ (5)

where fif and fit represents the free and trapped ion
contribution, respectively. We note that the distribution
function as prescribed above is continuous in the velocity
space. Furthermore, the velocity v is normalized to the
ion thermal velocity vit . λ stands for the ratio of free
ion temperature Tif to the trapped ion temperature Tit ,
which determine the number of trapped ions. It is obvious
from Eqs. (4) and (5) that λ = 1 (λ = 0) represents
a Maxwellian (flat-topped) ion distribution, while λ < 0
represents a vortex-like excavated trapped ion distribution
corresponding to an underpopulation of trapped ions [36].
Integrating these ion distributions over the velocity space,
we readily obtain the ion number density in the small
amplitude limit [36]

ni = 1 − φ − 4a

3
(−φ)3/2 + 1

2
φ2 (6)

where a = (1 − λ)/
√

π measures the finite deviation from
isothermality of ions. The term a > 0, is the contribution of
the resonant ions to the ion density.

In order to investigate the properties of small amplitude
dust-acoustic solitary waves, we assume that all the
dependent variables in Eqs. (1–3) depend only on a single
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variable ξ = x − Mt . We then obtain from Eqs. (1) and (2)
the following equation

nd = 1
√
1 + 2φ

M2

(7)

ud = M −
√

M2 + 2φ (8)

where we have imposed the appropriate boundary condi-
tions for localized disturbances, i.e, φ → 0, nd → 1 and
ud → 0 as ξ → ±∞.

Substituting the expressions for ni , ne and nd into
Poisson equation of Eq. (3), and integrating it by imposing
the boundary conditions for localized solutions, namely,
φ → 0 and dφ/dξ → 0 as ξ → ±∞, we get a form of
“energy conservation”:

1

2
(
dφ

dξ
)2 + V (φ) = 0 (9)

where V (φ) is the Sagdeev potential

V (φ) = M2(1 −
√

1 + 2φ

M2
) + ν

β
(1 − eβφ) (10)

+μ[φ − 1

2
φ2 + 8

15
a(−φ)5/2 + 1

6
φ3]

Now, we consider again our general Eq. (9), which can be
regarded as an “energy integral” of an oscillating particle
of unit mass with a velocity dφ/dξ and position φ in a
potential V (φ). The features of the soliton can be inferred
from the structure of V (φ). It is obvious from Eq. (10) that
V (φ) = 0 and dV (φ)/dφ = 0 at φ = 0. The existence
of a soliton must satisfy the following conditions [46]: (i)
(d2V/d2φ)φ=0 < 0, so that the fixed point at the origin is
unstable; (ii) there exists a nonzero φm, the maximum (or
minimum) value of φ, to make V (φm) = 0; and (iii)V (φ) <

0 when φ lies between 0 and φm.
As shown in Refs. [40] and [41], there is a critical

Mach number Mc corresponding to φm = −M2
c /2, where

the potential V (φm) = 0. Then we obtain the following
equation:

M2
c + 1

β

s

1 − s
(1 − e− 1

2βM2
c ) + 1

1 − s
[−M2

c

2
(11)

−M4
c

8
+ 8

15

1 − λ√
π

(
M2

c

2
)5/2 + 1

6
(−M2

c

2
)3] = 0

3 Basic Equations for Three-dimensional
Case

For three-dimensional low-frequency acoustic motions, for
simplicity, we assume that the acoustic wave is taken
unidirectional propagating along z-direction (hence setting
∂/∂x = 0, ∂/∂y = 0 [47–49]) and the external static

magnetic field is directed along the z axis, i.e., �B = B0�k
(whereB0 is the strength of the magnetic field and �k is a unit
vector along the z-direction). Then we have the following
normalized equations for the cold dust fluid [25]:

∂nd

∂t
+ ∂(ndwd)

∂z
= 0 (12)

∂ud

∂t
+ wd

∂ud

∂z
= −ωcdvd (13)

∂vd

∂t
+ wd

∂vd

∂z
= ωcdud (14)

∂wd

∂t
+ wd

∂wd

∂z
= ∂φ

∂z
(15)

∂2φ

∂z2
= nd + νeβφ − μni (16)

where �ud = ud
�i + vd

�j + wd
�k. ωcd = (

Zd

md
eB0)/ωpd

is the dust cyclotron frequency normalized to ωpd . Other
quantities are all normalized, which is identical to the case
of one dimension, discussed above.

We assume that all the dependent variables in Eqs.
(12–16) depend only on a single variable ξ = z − Mt ,
where ξ is normalized by λDd and M is the Mach number
(solitary wave velocity/ Cd ). Then, using the steady state
condition and imposing the appropriate boundary conditions
for localized perturbations, namely, φ → 0 and dφ/dξ → 0
as ξ → ±∞, we get a form of “energy conservation” for
arbitrary amplitudes:

1

2
(
dφ

dξ
)2 + V (φ) = 0 (17)

where V (φ) is the Sagdeev potential

V (φ) = M2(1 −
√

1 + 2φ

M2
) + ν

β
(1 − eβφ) (18)

+μ[φ − 1

2
φ2 + 8

15
a(−φ)5/2 + 1

6
φ3]

which is identical to Eq. (10).
By using Eqs. (13) and (14), we obtain

ud = vd = 0 (19)

4 Discussion

For the one-dimensional case, it is noted from Eq. (11) that
the critical Mach number Mc corresponding to maximum
amplitude for one-dimensional case depends on the ratio of
the free ion temperature to the electron temperature β =
Tif /Te, the ratio of the unperturbed electron number density
to the ion number density s = ne0

ni0
and the ratio of the free

ion temperature to the trapped ion temperature λ = Tif

Tit
.
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Fig. 1 a The dependence of Mc on λ, for different values of β,
obtained by Eq. (11). b The dependence of the minimum value φm

(corresponding to the maximum amplitude) on λ, for different values
of β. The values used are β = 0.1 (dot line), β = 0.5 (dash dot line),
and β = 0.9 (solid line); s = 0.5

We find from Figs. 1 and 2 that Mc and maximum
amplitude decrease when λ becomes larger. The results also
reveal that the effect of finite deviation from isothermality of
ions changes the Mach number and the amplitude for which
localized structures can exist.

It is also found from Fig. 1 that Mc and maximum
amplitude decrease with the increase of β. That is to say,
when the temperature of free ions keeps away from that
of electrons, dust-acoustic solitary structures with larger
amplitudes exist and the solitary wave speed is large.

Fig. 2 a The dependence of Mc on λ, for different values of s,
obtained by Eq. (11). b The dependence of the minimum value φm

(corresponding to the maximum amplitude) on λ, for different values
of s. The values used are s = 0.1 (dot line), s = 0.5 (dash dot line),
and s = 0.7 (solid line), β = 0.5

Fig. 3 a The dependence of Mc on λ, obtained by Eq. (11). b The
dependence of the minimum value φm (corresponding to the maximum
amplitude) on λ. β = 0.5, s = 0

It is also found from Fig. 2 that Mc and maximum
amplitude decrease with the increasing s = ne0

ni0
, hence, a

complete deletion of the background free electrons owing
to the attachment of these electrons to the surface of the
dust grains during the charging process can lead to a dust
acoustic solitary structure with smaller amplitude. s has
larger effect on Mc.

When s = 0 (ν = 0), that is, there is no electrons in dusty
plasma, the Mach number Mc and amplitude only depend
on the trapping parameter λ. We note from Fig. 3 that Mc

and amplitude decrease as λ increases.
It is obvious from Eq. (8) that when the amplitude is

maximum, the velocity of dust grain ud equals to, in nume-
rical value, the propagation velocity of solitary wave Mc.

For the special three-dimensional case with the waves
only propagating in the z direction, we set that the angle
between the direction of wave propagation and magnetic
field is 0, which plays an important role in determining the
nature of solitary waves. In this case, the Sagdeev potential
is identical to that obtained in the one-dimensional case. It
can be seen that the magnitude of the external magnetic field
has no effect on the amplitude of the solitary waves.

5 Conclusions

In conclusion, we investigate the DAWs for one-
dimensional and special three-dimensional cases in dusty
plasmas, plasmas with extremely massive, micron-sized,
negatively charged inertial dust grains, Boltzmann dis-
tibuted electrons and trapped ions. The Sagdeev potential
approach has been employed to obtain the dependence of
the critical Mach number corresponding to the maximum
amplitude of solitary waves on physical quantities. It is
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observed that the magnitude of the external magnetic field
has no effect on the amplitude of the solitary waves. We
stress that the results of the present investigation should be
useful in understanding the nonlinear features of DAWs in
laboratory and space plasmas.
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