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Abstract
Weconsider a new a-priori constraint for a sideways heat equation. This new constraint
is used as a source condition for regularization resulting in a new computational
method. An error estimate on this new regularization technique is obtained, showing
an improvement over the existing methods by the traditional a-priori constraint at the
boundary reconstruction.
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1 Introduction

1.1 Themathematical model

In practical steel production industry, it is sometimes necessary to estimate the surface
temperature or heat flux on a body from a measured temperature history at a fixed
location inside the body. This is called inverse heat conduction problem (IHCP) or
sideways heat problem [1].

In a one-dimensional setting, assuming that the body is large enough and the mea-
sured temperature is given at the interior location at x = L , this situation can be
modeled as the following sideways heat problem:

ut − uxx = 0, x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(L, t) = g(t), t > 0,

u(x, t)|x→∞ bounded. (1.1)
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The inverse problem under consideration is to seek the boundary solution u(0, ·) ∈
L2(0,∞) (or ux (0, ·) ∈ L2(0,∞)) from the given data g(·) ∈ L2(0,∞). We call this
procedure boundary inversion.

In real application, g(·) contains measurement errors which results in a measure-
ment data function gδ(·) ∈ L2(0,∞) satisfying an error tolerance level δ by

‖gδ(·) − g(·)‖ ≤ δ, (1.2)

where the constant δ > 0 represents a bound on the measurement error, ‖ · ‖ denotes
the L2−norm. Assume that there exists a constant M > 0, such that the following
traditional a-priori bound exists for the above sideways problem:

‖u(0, ·)‖p ≤ M, p ≥ 0, (1.3)

where ‖ · ‖p denotes the norm of Sobolev space H p(R) [when p = 0, we define
M = M̃ , see (1.8)]. This condition is also known as the a-priori condition (or the
source condition) for the exact solution.

Throughout this paper, we extend all the functions to the whole line −∞ < t < ∞
by setting the functions to be zero for t < 0 if necessary. Let

ĥ(ξ) = 1√
2π

∫ ∞

−∞
h(t)e−iξ t dt (1.4)

be the Fourier transform of the function h(t) ∈ L2(R). The solution of (1.1) can be
formulated in the frequency domain:

û(x, ξ) = e(L−x)(iξ)
1
2 ĝ(ξ), (1.5)

where
η := (iξ)

1
2 = |ξ | 12

(
cos

(π

4

)
+ i sign(ξ) sin

(π

4

))
. (1.6)

Denote the real part a and imaginary part b of η as

a := Re(η) = √|ξ |/2; b := Im(η) = sign(ξ)
√|ξ |/2. (1.7)

The sideways model for heat equation has been investigated by many authors. It is
well known that the sideways heat problem is an exponentially ill-posed problem [2].
All kinds of the regularization strategies were proposed to obtain a stable numerical
solution for the problem. These include the Tikhonov regularization method [3], dif-
ference approximation method [4], wavelet method [5], Fourier cut-off method [6],
hyperbolic approximation method [7,8], optimal filtering method [9], mollification
methods [10–12], and optimal stable approximation methods [13]. The reader can
refer to http://www.mai.liu.se/~frber/ip/index.html for more details.
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For most of these regularization methods mentioned above, the following error
estimate can be established under the a-priori condition (1.3) (e.g., see [14]):

‖uδ
α(x, ·) − u(x, ·)‖ ≤ cδ

x
L M1− x

L

(
ln

M

δ

)−2p(1− x
L )

,

where uδ
α(x, ·) is the regularization solutionwith noisy data gδ(·), c is a constant which

is independent of M and δ.
If x = 0, the above error estimate becomes

‖uδ
α(0, ·) − u(0, ·)‖ ≤ cM

(
ln

M

δ

)−2p

.

For the sideways heat problem (1.1), the best possible error bound at boundary x = 0
has the form of O(M(ln(M

δ
))−2p) with p > 0 [13]. This is a notorious logarithmic

error bound for ill-posed problems during the procedure of boundary inversion. If
M = 1000 and p = 1, we have the error bound M(ln(M

δ
))−2 ≤ 1 if and only if

δ ≤ 10−40. If p = 1/2, the requirement on δ becomes dramatically severe in the sense
that if δ is fixed and small, then the error bound M(ln(M

δ
))−2p cannot be small enough

to render the error bound meaningless.
In order to overcome the slow convergence rate of this notorious logarithmic error

bound, Carasso in his work for solving backward heat conduction problem introduced
a concept called slow time evolution from continuation boundary (SECB) [15]. Other
related works on backward heat conduction problem in time and de-blurring problems
can be referred to [16,17]. In this paper, we adapt the concept of SECB to deal with
the sideways heat problem.

1.2 The a-priori information (or the source condition)

An a-priori information about the unknown solution has been proven to be essential
in the analysis of ill-posed problems in mathematical physics. Without the a-priori
information, the convergence rate of constructed regularization method is arbitrarily
slow [18–21]. In this paper, the a-priori information (1.3) is interpreted as the source
condition in the framework of regularization theory [2,14].

The classical regularization method is based on prescribed bounds on the deriva-
tives of the unknown solution [e.g. (1.3)]. However, derivatives may fail to exist in
many real practical problems. For example, in image deblurring problem, derivatives
of the original image may not exist [16,17]. Another example is the sideways heat
problem proposed in this paper, derivatives of the unknown solution u(0, t) (which is
the boundary data) may not exist.

Following the usage of slow time evolution from the continuation boundary (SECB)
[15,22], we introduce the SECB constraint for the problem (1.1) as follow:
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For any constant K > 0 such that K 	 M̃/δ where M̃ satisfies ‖u(0, ·)‖ ≤ M̃
[i.e., (1.3) when p = 0], define s∗ by

s∗ =
L ln

(
M̃

M̃−K δ

)

ln M̃
δ

. (1.8)

The slow evolution constraint applied to the sideways problem requires that there
exists a known constant K and a known fixed s with L > s > s∗, such that

‖u(s, ·) − u(0, ·)‖ ≤ K δ. (1.9)

Equation (1.9) is called the SECB constraint for the sideways problem (1.1). The
condition s > s∗ will be interpreted in the subsequent Lemma 2.1. By Parseval’s
equality in Fourier analysis, the a-priori information (1.9) reads:

∫
R

|1 − e−s(iξ)1/2 |2|û(0, ξ)|2dξ ≤ K 2δ2, (1.10)

which will hold for small value of s.
In fact, (1.10) implies

∫
R

|1 − e−s
√|ξ |/2|2|û(0, ξ)|2dξ ≤ K 2δ2. (1.11)

This is because from (1.7) we have

|1 − e−s(iξ)1/2 |2 ≥ |1 − e−s
√|ξ |/2|2. (1.12)

Based on the existing SECB for backward heat conduction problem in time, in this
paper we devise a new regularization method for solving the sideways heat problem.
Under the new a-priori information (1.9), the error bound (2.20) improves over the
traditional logarithmic error bound.

2 Regularization and an improved error estimate

Our main aim is to derive the error estimates for the problem (1.1) under the new
a-priori information (1.9).

Consider the forward problem of (1.1):

ut − uxx = 0, x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(0, t) = f (t), t > 0,

u(x, t)|x→∞ bounded. (2.1)
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We can reformulate the solution of (2.1) as an operator equation in the frequency
domain:

B̂(s) f̂ (ξ) = û(s, ξ), (2.2)

where B̂(s) = e−s(iξ)1/2 : L2(R) → L2(R) is a multiplication operator.
For problem (2.1), in the physical domain we denote the forward operator as B(s) :

u(0, t) → u(s, t) where B(s) f (t) = s
2
√

π

∫ t
0

f (τ )

(t−τ)3/2
exp(− s2

4(t−τ)
)dτ and f (t) :=

u(0, t).
From the classical Tikhonov regularization theory, if the a-priori information is

given by (1.3), the Tikhonov regularization solution is obtained as the minimizer of
the following functional

‖B(L)u(0, ·) − gδ(·)‖2 + (δ2/M2)‖u(0, ·)‖2p. (2.3)

For the a-priori information (1.9), if two regularization parameters K and s are
given, the regularized solution to the problem is then the minimizer of the following
functional

‖B(L)u(0, ·) − gδ(·)‖2 + K−2‖u(s, ·) − u(0, ·)‖2. (2.4)

In terms of B(s)wemay express the solution f †(t) for the sideways problem at x = 0
as follows:

f †(·) = arg min f ∈L2{‖B(L) f (·) − gδ(·)‖2 + K−2‖(B(s) − I ) f (·)‖2}. (2.5)

This leads to the following Euler equation for f †(·):

[B(L)∗B(L) + K−2(B(s) − I )∗(B(s) − I )] f †(·) = B(L)∗gδ(·), (2.6)

where B(L)∗ is the adjoint operator of B(L) in L2-space. Since B̂(s) f =
e−s(iξ)1/2 f̂ (ξ), we can obtain the solution f †(·) in closed form in the Fourier transform
domain with noisy data. Hence, we have

f̂ †(ξ) = e−L(iξ)1/2

e−L
√
2|ξ | + K−2|1 − e−s(iξ)1/2 |2 ĝδ(ξ), (2.7)

which gives f †(t) by using inverse Fourier transform. Here, v̄ denotes the complex
conjugate of the complex function v.

The error estimate for the above proposed regularization method is given in the
following theorem.

Theorem 2.1 Suppose that the solution f (t) := u(0, t) satisfies (1.2) and (1.9) and
f †(t) denotes the regularized solution. Let P = P(L, K , s) be the positive definite
self-adjoint operator in L2(R) given by

P = B∗(L)B(L) + K−2(B(s) − I )∗(B(s) − I ). (2.8)
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Then, f † is the unique solution of P f † = B(L)∗gδ satisfying

‖B(L) f † − gδ‖2 + K−2‖(B(s) − I ) f †‖2 ≤ 2δ2, (2.9)

‖B(L)( f − f †)‖2 + K−2‖(B(s) − I )( f − f †)‖2 ≤ 2δ2, (2.10)

‖ f †(·) − f (·)‖ ≤ √
2δ‖P− 1

2 ‖. (2.11)

Proof LetH denote the Hilbert space direct sum L2(R)
⊕

L2(R)with elements [u, v]
and ([u1, v1], [u2, v2]) := 〈u1, u2〉 + 〈v1, v2〉 represent the scalar product of a pair
of elements with corresponding norm |||[u1, v1]|||2 := ‖u1‖2 + ‖v1‖2. Define C :
L2(R) → H to be Ch = [B(L)h, K−1(B(s) − I )h] and g̃ = [gδ, 0]. Minimizing
|||Ch − g̃||| over all h ∈ L2(R), we get the normal equation C∗C f † = C∗g̃, which
gives P f † = B(L)∗gδ . From (1.2) and (1.9), we have |||C f − gδ|||2 ≤ 2δ2. The
minimizer f † is the element such that C f † is the orthogonal projection inH of g̃. By
the Pythagorean theorem, we have

|||C f † − g̃|||2 + |||C( f − f †)|||2 = |||C f − g̃|||2 ≤ 2δ2.

Hence, |||C f †− g̃|||2 ≤ 2δ2 and |||C( f − f †)|||2 ≤ 2δ2 which gives (2.9) and (2.10),
respectively. Since P is a self-adjoint operator in L2(R), we have

‖P 1
2 ( f − f †)‖2 = 〈P( f − f †), ( f − f †)〉 = |||C( f − f †)|||2 ≤ 2δ2.

Therefore,

‖ f − f †‖ = ‖P− 1
2 P

1
2 ( f − f †)‖ ≤ ‖P− 1

2 ‖‖P1/2( f − f †)‖ ≤ √
2δ‖P− 1

2 ‖.


�
To obtain the error estimate for the regularized solution, we need to estimate the

norm ‖P− 1
2 ‖. Using the Parseval’s identity in Fourier analysis, we have ‖P− 1

2 h‖ =
‖̂
P− 1

2 h‖. It yields that

‖P− 1
2 ‖ = sup

ξ∈R

[
e−L

√
2|ξ | + K−2|1 − e−s

√
iξ |2

]−1/2

. (2.12)

From (1.12), there holds

e−L
√
2|ξ | + K−2|1 − e−s

√
iξ |2 ≥ e−L

√
2|ξ | + K−2|1 − e−s

√|ξ |/2|2,

we have

sup
ξ∈R

[
e−L

√
2|ξ |+K−2|1−e−s

√
iξ |2

]−1/2

≤ sup
ξ∈R

[
e−L

√
2|ξ |+K−2|1−e−s

√|ξ |/2|2
]−1/2

.

(2.13)
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Now, we need to estimate the term

sup
ξ∈R

[
e−L

√
2|ξ | + K−2|1 − e−s

√|ξ |/2|2
]−1/2

=
[
inf
x≥0

(e−2Lx + K−2(1 − e−sx )2)

]−1/2

. (2.14)

Finally, for |ξ | sufficiently large, we have

‖P− 1
2 ‖ ≈

[
inf
x≥0

(e−2Lx + K−2(1 − e−sx )2)

]−1/2

:= �(x). (2.15)

The key point of the next step is to minimize the function υ(x) with x ≥ 0, where

υ(x) = e−2Lx + K−2(1 − e−sx )2.

The following lemma shows the reason why we choose s > s∗ in the SECB constraint
(1.9).

Lemma 2.1 Let s∗ be given as in (1.8). If s ≤ s∗, then

�(x) ≥ M̃/(
√
2δ),

where �(x) is defined in (2.15).

Proof Let x0 = 1
L ln( M̃

δ
). Then e−2Lx0 = δ2/M̃2 and 1 − e−sx0 ≤ 1 − e−s∗x0 =

K δ/M̃ . Also, δ2/M̃2 ≤ υ(x0) ≤ 2δ2/M̃2 if s ≤ s∗. The result is now trivial from
(2.15). 
�
Remark 2.1 If s ≤ s∗, from (2.11) the regularization method has no convergence
result for δ → 0. In Lemma 2.1, we note that for |ξ | large enough, we have e−L

√
2|ξ | +

K−2|1 − e−s
√
iξ |2 ≈ e−L

√
2|ξ | + K−2|1 − e−s

√|ξ |/2|2.
Lemma 2.2 Let 0 < s < L. For x > 0, υ(x) has a unique minimum at x = x̃ > 0,
where x̃ satisfies

e−2Lx̃ = sK−2(e−sx̃ − e−2sx̃ ). (2.16)

Proof Noting the function υ(x) and by simple calculation for υ ′(x) = 0, we can show
that x̃ satisfies

e−2Lx̃ = sK−2(e−sx̃ − e−2sx̃ ). (a)

Similarly, we can compute the second derivative

υ ′′(x̃) = 4L2e−2Lx̃ − 2s2K−2e−sx̃ + 4s2K−2e−2sx̃ .
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Due to (a), we have 2s2K−2e−sx̃ = 2sLe−2Lx̃ + 2s2K−2e−2sx̃ , then υ ′′(x̃) =
2L(2L − s)e−2Lx̃ + 2s2K−2e−2sx̃ . Since 0 < s < L , it yields υ ′′(x̃) > 0. Hence, x̃
is unique. 
�
Lemma 2.3 If K/s > 1, then x̃ satisfies

2e

1 + 2Le
ln

K

s
≤ x̃ ≤ 1

2L − s
ln

K 2

s(1 − (s/K )(2es)/(1+2Le))
, (2.17)

where e is the Euler’s number.

Proof We take two steps to prove the inequalities.
(I) The lower bound of x̃ .
Since theuniqueminimum x̃ of the functionυ(x) satisfies e−2Lx̃ = [s2K−2 x̃(e−sx̃−

e−2sx̃ )]/(sx̃) [see (2.16)] and θ(y) := (e−y −e−2y)/y is a monotone decreasing func-
tion with the maximum value of 1 at y = 0, we obtain e−2Lx̃ ≤ s2K−2 x̃ . Hence,

x̃e2Lx̃ ≥ K 2/s2. (b)

Taking the operator of logarithm on the two sides of (b), we get x̃(L + ln x̃
2x̃ ) ≥ ln K

s .

In order to get the lower bound of x̃ , let ς(y) := L + ln y
2y with y > 0. Then, ς(y)

attains its maximum value at y = e, i.e., ς(y) ≤ L + 1/(2e) = 1+2eL
2e . Thus,

x̃ 1+2eL
2e ≥ x̃(L + ln x̃

2x̃ ) ≥ ln K
s , i.e., x̃ ≥ 2e

1+2eL ln K
s . Thus we get the lower bound of

x̃ .
(II) The upper bound of x̃ .

To obtain an upper bound of x̃ , we first have 1 − e−sx̃ ≥ 1 − e−s 2e
1+2Le ln

K
s =

1 − (s/K )(2es)/(1+2Le). From (2.16), e−(2L−s)x̃ = sK−2(1 − e−sx̃ ), we have
sK−2(1 − e−sx̃ ) ≥ sK−2[1 − (s/K )(2es)/(1+2Le)], i.e., e−(2L−s)x̃ ≥ sK−2[1 −
(s/K )(2es)/(1+2Le)]. Taking the operator of logarithm, we can get the result. 
�
Lemma 2.4 If 0 < K/s ≤ 1, then ‖P− 1

2 ‖ ≤ L + 1.

Proof From (2.16), x̃e2Lx̃ = (K 2s−2)[(sx̃)/(e−sx̃ − e−2sx̃ )] ≤ (sx̃)/(e−sx̃ − e−2sx̃ )

if K/s < 1. Hence,

x̃e(2L−s)x̃ ≤ (sx̃)/(1 − e−sx̃ ).

In order to investigate an upper bound of x̃ , noting that �(y) := y/(1 − e−y) is
a monotone increasing function for y ≥ 0 and 0 < s < L , we get x̃e(2L−s)x̃ ≤
(Lx̃)/(1− e−Lx̃ ). Therefore, eLx̃ ≤ e(2L−s)x̃ ≤ L/(1− e−Lx̃ ), i.e., x̃ ≤ 1

L ln(L + 1).
Thus, e−2Lx̃ ≥ (L + 1)−2. From (2.15), we have the conclusion. 
�

Theorem 2.2 Suppose that the solution f (t) := u(0, t) satisfies (1.2) and (1.9) and
f †(t) is the regularization solution. If s > s∗ and 0 < K/s < 1, then ‖ f − f †‖ ≤√
2(L + 1)δ. If s > s∗ and K/s > 1, denote two constants

N := [sK−2(1 − (s/K )
2es

1+2Le )] 2L
2L−s , (2.18)
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Q := K−2[1 − (s/K )
2es

1+2Le ]2. (2.19)

Then, we have
‖ f †(·) − f (·)‖ ≤ √

2δ(N + Q)−
1
2 . (2.20)

Proof If 0 < K/s ≤ 1, the result is obvious from Lemma 2.4. If K/s > 1, we need
to estimate the value of υ(x̃). Using the upper and lower bounds for x̃ in Lemma 2.3,

we get υ(x̃) ≥ e
−2L 1

2L−s ln
K2

s(1−(s/K )(2es)/(1+2Le)) + K−2(1 − e−s 2e
1+2Le ln

K
s )2 = N + Q.

The result now follows from Theorem 2.1 and the fact that ‖P− 1
2 ‖ ≤ [υ(x̃)]− 1

2 . 
�
Remark 2.2 In the proof of Theorem 2.2, an emphasis has to be made: the constant
s∗ ∈ (0, L), which depends on the a-priori bound M̃ aswell as δ and K , is not required.
The knowledge of an a-priori bound M̃ will still be useful for the computation of s∗
that will guarantee the choice of s > s∗, which is a premise of Theorem 2.2.

Remark 2.3 Obviously, the error estimate (2.20) improves over the classical error esti-
mate under the assumption (1.3): ‖uδ

α(0, ·) − u(0, ·)‖ ≤ cM(ln M
δ

)−2p with p ≥ 0,
where uδ

α(0, ·) denotes the regularization solution with noisy data gδ(·). If p = 0, then
M = M̃ and the a-priori information becomes ‖u(0, ·)‖ ≤ M̃ , thus the classical error
estimate is ‖uδ

α(0, ·) − u(0, ·)‖ ≤ cM̃ which is not convergent.

Remark 2.4 In image deblurring problem, which is also severely ill-posed, Carasso
[15] observed that the SECB method sharply reduces noise contamination and works
better than the classical regularization methods under the assumption (1.3).

Remark 2.5 In this paper, as an example, we used the SECB method for solving a
sideways heat equation. However, following the same route, the method can also be
applied to the Cauchy problem of elliptic equations and the other ill-posed problems
which can be formulated in the frequency domain [23,24].

3 Numerical experiments

In this section, we present some numerical experiments to illustrate the properties of
the proposed method with the fixed parameter L = 1.

The numerical tests are performed in the following way: First we select a solution
u(0, t) = f (t), 0 ≤ t ≤ 1 and compute the data function u(1, t) = g(t) by solving
a well-posed quarter plane problem for the equation using a finite difference scheme.
Then we add a normally distributed perturbation of variance ε to the data function,
giving gδ . We compute the noise level δ by discrete L2-norm ‖g − gδ‖ and the a-
priori bound ‖ f ‖ ≈ M̃ with total m = 100 test points . From the noisy data function
we reconstruct u(0, t) and compare the result with the exact solution. In the process
of reconstruction, we use FFT (Fast Fourier Transform) algorithm to compute the
closed form (2.7), then we use inverse FFT to obtain the reconstructed solution. On
the Fourier-based method for solving sideways heat equation, the reader can consult
[5].
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Fig. 1 Example 1 a the input data g(t), b the reconstructed result

We conduct two tests: The first test is to show that the proposed method works well,
meanwhile we give the comparison on the error bounds under the a-priori information

‖u(0, t)‖ ≤ M̃ : (1) the quantity E1 := √
2δ(N + Q)− 1

2 is the error bound for our
method; (2) the quantity E2 := 2M̃ is the error bound for the classical methods (e.g.,
see [14]). The second is to show that the theoretical requirements s > s∗ and (1.9) are
important. As Remark 2.1 mentioned, if s > s∗ is violated, then we has no convergent
result. We will see that the numerical solutions deteriorate as the requirements are
violated gradually.

Test 1 In this test, we select three different exact solutions.

Example 1 First we select the exact solution defined on [0, 1] which is infinitely
smooth:

f (t) =
{
0, if t = 0,
1

t
3
2
exp

(
− (1−t)2

4t

)
, else. (3.1)

First by solving a well-posed forward problem, we can get the input data g(t) which
is displayed in Figure 1a, and then we compute the regularized solution which is
displayed in Figure 1b. The parameters involved are listed as follows: ε = 1 × 10−2,
δ = 1 × 10−2, M̃ = 2.89, s = 0.1, s∗ = 0.02, K = 40.

Example 2 Second, let us consider the exact solution defined on [0, 1] which is not
continuous:

f (t) =
{
1, if 0.25 ≤ t ≤ 0.75,
0, else.

(3.2)
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Fig. 2 Example 2 a the input data g(t), b the reconstructed result

Similarly we can get the input data g(t) which is displayed in Fig. 2a, and then
we computed the regularized solution which is displayed in Fig. 2b. The parameters
involved are listed as follows: ε = 1 ∗ 10−2, δ = 1 × 10−2, M̃ = 0.70, s = 0.1,
s∗ = 0.06, K = 15.

Example 3 In the last example, we consider an exact solution which is not infinitely
smooth

f (t) =
⎧⎨
⎩
4x − 1, if 0.25 ≤ t < 0.50,
3 − 4x, if 0.50 ≤ t < 0.75,
0, else,

(3.3)

and the corresponding results are displayed in Figure 3a, Figure 3b. The corresponding
parameters involved are listed as follows: ε = 1 ∗ 10−2, δ = 1 × 10−2, M̃ = 0.40,
s = 0.1, s∗ = 0.07, K = 10.

For comparison, we summarize the error bounds E1, E2 as Table 1.
From Table 1, we see that the new error bound improves over the classical error

bound.
A common characteristic of these examples is that the approximation errors are

maximal at the boundary (t = 0 and t = 1) of the considered interval. A possible
explanation is the extension to zero of the data function outside the time interval which
introduces additional jumps into the data. We have tested our method to various other
examples and got similar good numerical results.
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Fig. 3 Example 3 a the input data g(t), b the reconstructed result

Table 1 Comparison of error
bounds

Exact solution (3.1) (3.2) (3.3)

E1 1.30 0.58 0.40

E2 5.80 1.40 0.80

Test 2 In Example 2, if we change the parameter s = 0.01 < s∗ = 0.2 such that the
requirement s > s∗ is violated however we keep (1.9) effective, the numerical result
is displayed as Fig. 4. The parameters involved are listed as follows: ε = 1 × 10−2,
δ = 1 × 10−2, M = 0.70, s = 0.01, s∗ = 0.2, K = 40. From Fig. 4, we can see that
the numerical result is bad, which agrees with the theoretical indication. We observed
similar results for Examples 1 and 3.

All numerical tests show that the parameters s, K play important roles for the reg-
ularized solution. Usually we call s, K regularization parameters. Therefore selecting
appropriate regularization parameters is an important task.

4 Conclusions

We proposed a new method for solving a sideways heat equation which is severely
ill-posed. In this paper, we proved that the method is stable and gave an error bound. It
is very simple and fast since the regularized solution has a closed form in the frequency
domain. The numerical experiments for test examples are convincing. The method can
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Fig. 4 The bad reconstructed
result for Example 2
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be generalized to multi-dimensional cases when the Fourier transform technique for
the problem is applicable. However, how to choose the regularization parameters s, K
accurately is an open problem. We will develop an iterative method to solve it in the
forthcoming paper.
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