# 基于 SIFT 和改进的 RANSAC 图像配准算法

贾雯晓<sup>1</sup>,张贵仓<sup>1</sup>,汪亮亮<sup>1</sup>,秦 娜<sup>2</sup> JIA Wenxiao<sup>1</sup>, ZHANG Guicang<sup>1</sup>, WANG Liangliang<sup>1</sup>, QIN Na<sup>2</sup>

1. 西北师范大学 数学与统计学院, 兰州 730070

2. 西北师范大学 计算机科学与工程学院, 兰州 730070

1. College of Mathematics and Statistics Science, Northwest Normal University, Lanzhou 730070, China

2. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

# JIA Wenxiao, ZHANG Guicang, WANG Liangliang, et al. Image registration algorithm based on SIFT and improved RANSAC. Computer Engineering and Applications, 2018, 54(2):203-207.

Abstract: In order to solve the problem that the accuracy of image registration is not high due to the large number of iterations of RANSAC algorithm, an improved RANSAC image registration algorithm is proposed. First, the reference image and the image to be registered are NSCT transformed into low frequency subband and high frequency subband. Then this paper uses the vector included angle algorithm and Structural Similarity (SSIM) to extract the edge feature points of the high frequency subband, and uses the SIFT algorithm for the low frequency subband and sets the appropriate distance threshold to extract the feature points. Finally, the improved RANSAC algorithm is used to improve the matching of feature points, and the matching points are selected to achieve image registration. The experimental results show that the proposed algorithm can effectively find more pairs of matching points and accurately remove false matching points, which obviously improves the registration accuracy.

**Key words:** Scale-Invariant Feature Transform(SIFT); Random Sample Consensus(RANSAC); image registration; Nonsubsampled Contourlet(NSCT) transformation; feature point

摘 要:为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配 准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹 角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征 点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算 法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。

关键词:尺度不变特征变换(SIFT);随机抽样一致性(RANSAC);图像配准;非下采样轮廓波(NSCT)变换;特征点 文献标志码:A 中图分类号:TP391.41 doi:10.3778/j.issn.1002-8331.1707-0264

1 引言

图像配准技术是计算机图像处理领域的一个重要 方向,在医学图像处理、计算机视觉、模式识别等领域有 着极其广泛的应用和研究。图像配准是将不同时间、不 同传感器或不同视角下获取的同一场景的两幅或者多 幅图像匹配为一张高分辨率、广视角的图像处理过程。

目前常用的图像配准技术主要是基于灰度信息和

基于特征的方法<sup>[1]</sup>。基于灰度的方法一般采用空间相关 法或者频域相关法,主要缺点是对光照变化和噪声干扰 比较敏感,且受旋转及遮挡影响较大。基于特征的方 法<sup>[2]</sup>现阶段运用得较为广泛,主要是利用了从多幅图像 提取到的特征点作为匹配基元;所以对环境照明的变化 不太敏感,性能较为稳定。SIFT算法<sup>[3-4]</sup>由于其尺度不 变性、旋转不变性等优良特性,近年来得到了广泛应

作者简介:贾雯晓(1989—),女,硕士,研究领域为图像处理,E-mail:1103124156@qq.com;张贵仓(1964—),男,博士,教授,研究领域为图像处理、数字水印、图形学等;汪亮亮(1990—),男,硕士,研究领域为图像处理;秦娜(1982—),女,实验师,主要研究方向为图像处理、数字水印。

收稿日期:2017-07-17 修回日期:2017-09-14 文章编号:1002-8331(2018)02-0203-05

基金项目:甘肃省自然科学基金(No.0803RJZA109);甘肃省科技计划资助(No.17YF1FA119)。

用。许佳佳等人<sup>[5-6]</sup>提出了利用Forstner算法对角点精定 位,然后使用SIFT特征描述方法进行匹配。虽然提高 了算法的速率,但是算法提取到的匹配点数目没有较大 的提升,匹配精度不高。吴丹力<sup>[7]</sup>等人提出了利用多次 匹配特征向量之间的欧氏距离来剔除均方根误差较大 点对的图像配准算法,算法虽提高了图像的配准精度, 但算法的复杂度大大提升,计算速率相对较低。岳昕等 人<sup>[8]</sup>提出的基于信息熵与SIFT算法的图像配准算法,通 过截取熵值最大的区域对序列图像匹配,建立图像间变 换关系,并以局部关系误差全局配准。虽然能提高单纯 使用SIFT算法配准的实时性,但是分割操作容易出现 误匹配,因此匹配精度不高。苏培峰等人<sup>[9]</sup>提出利用Hu 矩阵和SIFT结合的配准算法,虽提升了图像的配准效 率,但Hu矩阵对图像的大幅度旋转和尺度变换有较强 的敏感性。

针对以上问题,本文提出了一种基于 SIFT 与改进 的 RANSAC 图像配准算法。参考图像与待配准图像经 NSCT 变换分解成低频和高频子带,分别提取各自的特 征点并对其进行粗匹配,然后利用改进后的 RANSAC 算法对粗匹配点进行筛选,去除误匹配点对并进行精匹 配,从而实现图像配准。经实验仿真表明,该算法能够 有效地提高图像配准精度和效率。

#### 2 算法原理

# 2.1 NSCT 变换

2005年Arthur L.Cunha等人<sup>101</sup>在传统Contourlet变换的基础上,提出了一种具有多尺度、多方向的非采样 Contourlet变换,即NSCT变换。随后,Do M N等人<sup>111</sup> 对NSCT算法进行设计并成功应用于图像分解。NSCT 与Contourlet在结构上保持了一致性,但是NSCT去除 了采样环节,它是由非采样金字塔(Nonsubsampled Pyramid, NSP)和非下采样方向滤波器组(Nonsubsampled Directional Filter Bank, NSDFB)构成。图像经非 采样滤波器分解成高频和低频部分,而后的每一级分解 都需要对上一级变换进行上采样。对上一级的低频部 分利用上采样低通滤波器进行滤波处理得到下一级的 低频部分;对上一级低频部分进行上采样高通滤波器得 到下一级的高频部分,如此循环得到图像的多分辨率分 解。其分解过程如图1、2所示。因此,NSCT变换不仅 具有Contourlet变换的众多优良特性,还具有平移不变



性和更高的冗余度,从而使得变换能够更灵活、更完善 地表示图像信息。

#### 2.2 SIFT 特征提取

SIFT 算法<sup>[12]</sup>是由 Lowe 于 1999 年提出并于 2004 年 对算法进行了完善。该算法可以对旋转、亮度的变化及 尺度缩放保持不变性,并且对视角变化、仿射变换保持 一定的稳定性,对图像具有一定的鲁棒性<sup>[13]</sup>。

SIFT 算法具体分为以下四个步骤:

(1)尺度空间的关键点检测

SIFT 算法先对图像进行高斯核卷积建立尺度空间,图像的尺度空间定义为:

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$
(1)

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
(2)

其中, I(x,y) 为待检测图像;  $\sigma$  为可变核,即尺度空间 因子。

该算法在同一尺度下对相邻的尺度空间进行相减, 得到高度差分尺度空间 *D*(*x*, *y*, *σ*)。其表达式如下:

$$D(x, y, \sigma) = [G(x, y, k\sigma) - G(x, y, \sigma)] * I(x, y) =$$
$$L(x, y, k\sigma) - L(x, y, \sigma)$$
(3)

其中 k 为常数因子,表示相邻的两个尺度空间的间隔。 在得到差分尺度空间之后,经过比较关键点与周围18 个邻域像素点的极值大小,从而来确定候选关键点。

(2)定位关键点

SIFT 算法通过三维二次拟合函数将候选关键点拟 合到像素附近的位置、尺度和主曲率,进而可以删除掉 具有低对比度或者边缘定位不精确的关键点。进而增 强了匹配的稳定性,提高了图像的鲁棒性。

(3)确定关键点位置

利用图像中关键点附近像素的梯度方向分布特征 来为每个关键点指定方向。首先在关键点为中心的领 域内进行采样,并利用直方图来统计领域像素的主梯度 方向,将直方图的峰值作为该特征点的主方向。其中关 键点的极值和方向公式如(4)、(5)所示:

m(x, y) =

$$\int (L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2 \quad (4)$$

$$\theta(x,y) = \arctan\left(\frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}\right)$$
(5)

# (4)生成特征描述符

为实现旋转不变性,首先将坐标轴相对于关键点的 主方向转动。以关键点为中心区域使用16×16的窗口, 将每个窗口分成4×4的子块,并在每个子块上计算8个 方向梯度,这样会形成128维的特征向量,然后通过特 征向量的归一化处理去除光照变化的影响。

#### 3 算法过程

本文采用NSCT对参考图像和待配准图像进行变换,将图像分解为低频和高频子带。由于低频部分去除了图像的高频噪声,此时采用SIFT提取特征点会减少计算量。而对高频部分利用结构相似性来进行图像匹配。

#### 3.1 粗匹配

#### 3.1.1 低频子带粗匹配

利用 SIFT 提取特征点之后,采用特征点的欧式距 离作为图像的相似性进行判定。首先,选定一个待配准 图像中的特征点  $q_1$ ,然后找出它与原图像中欧氏距离 的值最小的两个关键点  $p_1$ 和  $p_2$ ,并将这两个关键点的 距离取为  $d_1$ 与  $d_2(d_1 > d_2)$ 。若  $d_2/d_1$ 小于某个阈值,则 认为  $q_1$ 与  $p_2$ 是一对匹配点。通过调节阈值的大小来 确定匹配点对的数量,该阈值可通过实验确定,一般取 0.5~0.8较为合适,本文取阈值值为0.6。

## 3.1.2 高频子带粗匹配

因为 atrous 算法<sup>[14]</sup>在 Contourlet 中去除了下采样的 过程,但 NSCT 本身具有平移不变性,同时图像经过 NSCT 变换之后,分解出不同方向的带通子带,这些方 向子带中某个位置的系数代表了原图像对应位置的梯 度,进而将这些梯度进行求矢量角,可以提取出高频特 征点。本文将原图像进行2级变换,从而得到4个方向 子带,其中1方向和4方向、2方向和4方向垂直。则由4 个方向子带的矢量夹角可表示为:

$$\angle \theta = \arccos \frac{f_{14}(x, y)}{f_{23}(x, y)} \tag{6}$$

其中,  $f_{14}(x, y)$ 和  $f_{23}(x, y)$ 分别表示该位置上1、4方向和2、3方向的矢量,  $\angle \theta$ 为二者之间的夹角。

通过控制角度阈值,可以有效控制特征点的数目。因为矢量夹角的大小代表着该位置图像的变化趋势,所以阈值的选取要依据图像的不同而定,一般通过多次实验来确定最佳阈值。提取到特征点之后,本文采用结构相似性系数来度量待匹配图像与原图像特征点之间的相似性。首先在待配准图像高频子带中的特征点位置截取*M×N*的子窗口,在原图像的高频子带上也截取相同大小的子窗口,把原图像的子窗口记为*X*,把待配准图像的子窗口记为*Y*。它们的结构相似性(SSIM)<sup>[15]</sup>为:

$$SSIM(X,Y) = [l(X,Y)]^{\alpha} \cdot [c(X,Y)]^{\beta} \cdot [s(X,Y)]^{\gamma} \quad (7)$$

$$l(X,Y) = \frac{2u_x u_y + Q_1}{u_x^2 + u_y^2 + Q_1}$$
(8)

$$c(X,Y) = \frac{2\sigma_x \sigma_y + Q_2}{\sigma_x^2 + \sigma_y^2 + Q_2}$$
(9)

$$s(X,Y) = \frac{\sigma_{xy} + Q_3}{\sigma_x \sigma_y + Q_3} \tag{10}$$

其中,l(X,Y)为亮度函数,c(X,Y)为对比度函数, s(X,Y)为结构信息函数; $\alpha > 0, \beta > 0, \gamma > 0$ 是调整权值;  $u_x$ 和 $u_y$ 分别为图像 X和Y的均值;  $\sigma_x$ 和 $\sigma_y$ 分别是 X 和Y的标准差;  $\sigma_{xy}$ 是两幅图像的协方差;  $Q_1, Q_2, Q_3$ 是 均衡各函数的很小常数。

结构相似性 SSIM < 1,其值越大,表明图像 X 和 Y 就越相似。在配准过程中,当结构相似性系数最大时,则两幅图像处于最佳配准位置。

#### 3.2 改进的RANSAC算法去除误匹配

在对图像低频和高频子带进行粗匹配后,对于图像 而言,难免存在很多的误匹配点。本文采用改进的 RANSAC算法去除误匹配。

RANSAC算法<sup>116-17</sup>通过找到最优的参数矩阵从而 使得满足该矩阵的数据点的个数最多。假设观测数据 中包含局内点和局外点,其中局内点近似被直线通过, 而局外点远离于直线。简单的最小二乘法不能找到适 应于局内点的直线,原因是最小二乘法尽量去适应包含 局外点在内的所有点。相反,RANSAC能得出一个仅 仅用局内点计算出的模型,并且概率足够高。假设局内 点至少含有4组匹配点对,那么RANSAC算法从匹配数 据中随机抽出至少4个样本,并保证这4个样本点不共 线。其数学模型如下:

$$\begin{bmatrix} x^{T} \\ x' \\ 1 \end{bmatrix} = \begin{vmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{vmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(11)

(x,y)表示目标点的位置,(x',y')表示场景图对应点的 位置,s为尺度参数。

计算出单应矩阵后,利用这个模型去测试所有的数 据点。若此模型是最优模型,则对应的代价函数最小。 其代价函数为:

$$\sum_{i=1}^{n} \left( x_{i}' \frac{h_{11}x_{i} + h_{12}y_{i} + h_{13}}{h_{31}x_{i} + h_{32}y_{i} + h_{33}} \right)^{2} + \left( y_{i}' \frac{h_{21}x_{i} + h_{22}y_{i} + h_{23}}{h_{31}x_{i} + h_{32}y_{i} + h_{33}} \right)^{2}$$
(12)

本文针对 RANSAC 算法进行了改进,利用准确匹 配点间相对斜率相同的关系来剔除误匹配点,并计算单 应矩阵。设  $(A_i, A_j)$  和  $(B_i, B_j)$  是参考图像 A 和待匹配 图像 B 两两正确的匹配对。那么,  $A_i$  和  $B_i$  的绝对斜率  $k(A_i, B_i)$  应该相似于  $A_j$  和  $B_j$  的绝对斜率  $k(A_j, B_j)$ 。基 于以上原理,本文利用参考图像 A 中的  $A_i$  与它自身中 所有的特征点  $A_j$  的斜率关系和待匹配图像 B 中的  $B_i$ 与它自身中所有的特征点  $B_j$  的斜率关系的相似性评价 两点对应关系,提出如下的评价函数:

$$T(i) = \sum \frac{R(i,j)}{1 + K(i,j)} \tag{13}$$

$$R(i,j) = \exp(-\frac{k(A_i, A_j) - k(B_i, B_j)}{K(i,j)})$$
(14)

$$K(i,j) = \left[k(A_i, B_i) + k(A_j, B_j)\right]/2$$
(15)

其中 R(i,j) 表示  $A_i$ 、 $B_i$  与各自图像每个兴趣点斜率的相 对差异; K(i,j) 表示  $A_i$ 、 $B_i$  与各自图像每个兴趣点的平 均斜率。

3.3 算法流程

本文算法流程如图3所示。



## 4 实验结果和分析

为了验证本文算法的有效性,实验选取了不同角度 对同一场景拍摄的几组图像作为配准实验图像,图像的 分辨率都为256 pixel×256 pixel,并对实验图像都进行 了预处理。同时为了进一步说明实验的优越性,本文将 较常用的SIFT算法、SIFT+RANSAC算法和文献[8-9]与 本文所提算法进行了比较。

图4(a)表示的是参考图像,图4(b)表示待配准图像。图5是利用SIFT算法提取特征点的实验结果图像,可以明显看出SIFT算法虽然检测到的特征点比较多,但是同时误匹配点也很多。图6表示的是SIFT+RANSAC算法实验结果,显然利用此算法图像的匹配点减少了很多,但是误匹配点明显减少、匹配精度也相应提高了,其中匹配精度可利用如下公式计算:

$$R = \frac{N_{\text{normal}}}{N_{\text{all}}} \tag{16}$$

其中 N<sub>normal</sub> 表示正确的匹配点, N<sub>all</sub> 表示全部匹配点数目。



图7表示文献[8]算法的实验结果,从主观可以判断 出该算法相比SIFT+RANSAC算法而言,误匹配点明显



图5 SIFT 算法实验结果



图6 SIFT+RANSAC算法实验结果

减少,配准精度有了提高,但误匹配点还是存在。图8 表示为文献[9]算法实验结果,因为Hu矩阵对旋转有着 较强的敏感性,所以从实验所得结果可以明显看出误匹 配点存在,配准精度较差。图9是本文算法实验结果, 可以看出本文算法较SIFT算法得到的匹配对较少,但 误匹配点对几乎没有,匹配精度近乎100%。这是因为 图像经NSCT分解后,在低频部分和高频部分都能对特 征点进行检测,增加了检测精度,同时又利用改进后的 RANSAC算法对误匹配点进行了剔除,在提高精度的 同时又提高了算法的实时性。



图7 文献[8]算法实验结果



图8 文献[9]算法实验结果



图9 本文算法实验结果

由表1可以看出基于SIFT算法提取特征点数目比基于本文算法提取的数目少,这是由于图像经NSCT分

| 图像组名    | 分辨率大小   | <br>匹配率/% |               |         |         |        |
|---------|---------|-----------|---------------|---------|---------|--------|
|         |         | SIFT算法    | SIFT+RANSAC算法 | 文献[8]算法 | 文献[9]算法 | 本文算法   |
| 图 10(a) | 256×256 | 77.62     | 88.31         | 94.96   | 91.44   | 100.00 |
| 图 10(b) | 256×256 | 80.14     | 87.25         | 94.24   | 90.96   | 100.00 |
| 图 10(c) | 256×256 | 75.45     | 86.38         | 93.99   | 89.16   | 98.23  |
| 图 10(d) | 256×256 | 72.36     | 86.39         | 94.01   | 89.43   | 98.14  |

表2 本文算法与其他四种算法匹配率对比

解成低频和高频部分,再经SIFT算法提取到较多的特征点。而从配准点对数来看,基于文献[9]算法的配对数最少,这是由于Hu矩阵的引入降低了特征点的数目;本文算法配对数较文献[9]有了较大的提升,但匹配正确率大大提高;SIFT+RANSAC算法和文献[8]次之,显然这两种算法的误匹配点存在数目还是较多;SIFT算法得到的匹配对数目最多,但误匹配率也是最高的。这说明本文算法在保证较高的匹配率下能大大减少匹配数,从而提高了算法的计算速度。

表1 本文算法与其他四种算法实验数据对比

| 算法            | 特征点数 | 配对数 | 匹配正确率/% |
|---------------|------|-----|---------|
| SIFT算法        | 752  | 383 | 79.65   |
| SIFT+RANSAC算法 | 752  | 146 | 87.25   |
| 文献[8]算法       | 752  | 223 | 94.17   |
| 文献[9]算法       | 752  | 35  | 91.42   |
| 本文算法          | 752  | 123 | 100.00  |

表2是运用上述三种匹配算法对图10的四组图像 进行实验仿真,通过对比得到不同算法下的匹配正确 率,利用数据进一步说明本文算法的优越性。由表2可 以得出,基于本文算法得到的实验图像匹配正确率最 高,明显优于其他几种种算法,较其他四种算法在匹配 正确率上有着较大的提升。



图10 本文算法在四组不同场景下的配准实验结果

#### 5 结束语

本文提出了一种基于 SIFT 与改进的 RANSAC 图像 配准算法,采用 NSCT 变换对参考图像和待配准图像分 别进行分解;再利用 SIFT 算法快速地提取出较多的特 征点,并进行粗匹配;最后用改进的 RANSAC 算法进行 精匹配。实验表明,本文算法在提取特征点数量和匹配 准确率上较 SIFT 算法、SIFT+RANSAC 算法和文献[8-9] 有明显的优越性。实验仿真进一步验证了本文算法配 准的精确性。目前,本文算法在配准速度方面并没有较 大的提升。所以,今后可以对提高本文算法配准速率, 以及将本文算法运用到其他配准领域等问题进行研究。

# 参考文献:

- [1] 章毓晋.图像工程(下册)[M].北京:清华大学出版社,2007: 112-117,230-242.
- [2] 吴泽鹏,郭玲玲,朱明超,等.结合图像信息熵和特征点的 图像配准方法[J].红外与激光工程,2013,42(10):2846-2852.
- [3] 刘佳嘉,何小海,陈为龙.一种结合小波变换的SIFT特征 图像匹配算法[J].计算机仿真,2011,28(1):257-260.
- [4] 李玉峰,李光泽,谷绍湖,等.基于区域分块与尺度不变特征变换的图像拼接算法[J].光学精密工程,2016,24(5):1197-1205.
- [5] 许佳佳.结合Harris与SIFT算子的图像快速配准算法[J]. 中国光学,2015,8(4):574-581.
- [6] 许佳佳,张叶,张赫.基于改进Harris-SIFT 算子的快速图 像配准算法[J].电子测量与仪器学报,2015,29(1):48-54.
- [7] 吴丹力,毛政元.一种基于仿射变换的SIFT误匹配剔除方法[J].福州大学学报:自然科学版,2017,45(1):121-126.
- [8] 岳昕,尚振宏,强振平,等.基于信息熵与SIFT算法的天文 图像配准[J].计算机科学,2015,42(6):57-60.
- [9] 苏培峰,黄世奇,王艺婷,等.用图像矩特征描述的SIFT特征SAR图像配准[J].电光与控制,2016,23(8):89-91.
- [10] Cunha A L, Zhou Jianping, Do M N.Nonsubsampled contourlet transform: theory, design and applications[J].IEEE Transactions on Image Proceessing, 2005.
- [11] Do M N, Vetterli M.The contourlet transform; an efficient directional multiresolution image representation[J].
   IEEE Transactions on Image Processing, 2005, 14(12); 2091-2106.
- [12] Lowe D G.Distinctive image features from scale invariant keypoints[J].International Journal on Computer Vision, 2004, 60(2):91-110.
- [13] 李兵,刘磊,魏志强.一种具有强实时性、强鲁棒性的图像 匹配算法[J].软件学报,2014,25(7):1583-1592.
- [14] Shensa M J.The discrete wavelet transform: wedding the àtrous and Mallat algorithms[J].IEEE Trans on Image Processing, 2005, 14(12): 2091-2106.
- [15] Wang Z, Bovik A C, Sheikh H R, et al.Image quality assessment: from error visibility to structural similarity[J].
   IEEE Transactions on Image Processing, 2004, 13 (4): 600-612.
- [16] Matas J, Chum O.Randomized RANSAC with sequential probability ratio test[C]//Proc Int'1 Conf Computer Vision, 2005, 2: 1727-1732.
- [17] 赵烨,蒋建国,洪日昌.基于RANSAC的SIFT匹配优化[J]. 光电工程,2014,41(8):58-65.