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Pythagorean fuzzy sets (PFSs), originally proposed by Yager (Yager, Abbasov. Int J Intell Syst
2013;28:436—452), are a new tool to deal with vagueness considering the membership grades
are pairs (i, v) satisfying the condition u? 4+ v?> < 1. As a generalized set, PFSs have close
relationship with intuitionistic fuzzy sets (IFSs). PFSs can be reduced to IFSs satisfying the
condition u + v < 1. However, the related operations of PFSs do not take different conditions
into consideration. To better understand PFSs, we propose two operations: division and subtraction,
and discuss their properties in detail. Then, based on Pythagorean fuzzy aggregation operators,
their properties such as boundedness, idempotency, and monotonicity are investigated. Later,
we develop a Pythagorean fuzzy superiority and inferiority ranking method to solve uncertainty
multiple attribute group decision making problem. Finally, an illustrative example for evaluating
the Internet stocks performance is given to verify the developed approach and to demonstrate its
practicality and effectiveness. © 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Atanassov! initiated the concept of intuitionistic fuzzy set (IFS), which is a
generalization of Zadeh’s fuzzy sets.> Each element in the IFS is expressed by an
ordered pair (i, v) satisfying the condition p + v < 1. IFS has its greatest use in
practical multiple attribute decision making (MADM) problems, and the academic
research have achieved great development.®8

However, in the some practical problems, the sum of membership degree and
nonmembership degree to which an alternative satisfying an attribute provided by
decision maker (DM) may be bigger than 1, but their square sum is less than or equal
1. Therefore, Yager”!! developed Pythagorean fuzzy set (PFS) characterized by a
membership degree and nonmembership degree, which satisfies the condition that
the square sum of its membership degree and nonmembership degree is less than or
equal to 1. Yager’ gave an example to state this situation: a DM gives his support

NE) 1

for membership of an alternative is %5~ and his support against membership is 5

Owing to the sum of two values is bigger than 1, they are not available for IFS, but

they are available for PFS since ( */75)2 + (%)2 < 1. Obviously, PFS is more capable
than IFS to model the vagueness in the practical problems.
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For further research of PFS, based on modificatory TOPSIS method,'? Zhang
and Xu'® proposed an extension of Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) to solve MADM problem with Pythagorean fuzzy
information. Yager®!? proposed four kinds of aggregation operators: Pythagorean
fuzzy weighted average (PFWA) operator, Pythagorean fuzzy weighted geometric
average (PFWG) operator, Pythagorean fuzzy weighted power average (PFWPA)
operator, Pythagorean fuzzy weighted power geometric (PFWPG) operator, and ap-
plied them to MADM problems. However, few studies'® focus on operations over
PFS. Therefore, there is a need to define some new operations such as division, sub-
traction, and discuss their properties. Meanwhile, we explore some properties such
as boundedness, idempotency, and monotonicity over Pythagorean fuzzy aggrega-
tion operators. In this paper, we will extend the superiority and inferiority ranking
(SIR) method to solve the multiple attribute group decision making (MAGDM)
problems with Pythagorean fuzzy information. The SIR method was first intro-
duced by Xu'* simultaneously employs the superiority and inferiority information
to reflect the experts’ attitude toward each attribute and describe the priority alterna-
tives more comprehensively and accurately. It is a significant generalization of the
well-known Preference Ranking Organisation MeTHod for Enrichment Evaluations
(PROMETHEE) method."> Some scholars have extended the SIR method to solve
the MAGDM problems with different fuzzy environments, such as in intuitionis-
tic fuzzy environment'®!” and hesitant fuzzy environment.!® However, both SIR
method and its extension fail to solve the MAGDM problems with Pythagorean
fuzzy information. Therefore, we develop a novel SIR method named Pythagorean
fuzzy SIR (PF-SIR).

The remainder of this paper is organized as follows. In Section 2, some basic
definitions of IFS and PFS are briefly reviewed. In Section 3, two new operations
division and subtraction are developed and their properties with others operations are
discussed in detail. In Section 4, the relationship of Pythagorean fuzzy aggregation
operators are investigated. In Section 5, we develop a PF-SIR method to solve
MAGDM problem. In Section 6, a numerical example for evaluating Internet stocks
is given to illustrate the proposed method. The paper is concluded in Section 7.

2. SOME BASIC CONCEPTS OF IFS AND PFS

In the following, some basic concepts related to IFS and PFS are introduced.
DEFINITION 1 (1). Let X be a universe of discourse. An IFS I in X is given by

I ={<x,pu(x),vx)>x € X}, ey

where ; : X — [0,1] denotes the degree of membership and v; : X — [0,1] de-
notes the degree of nonmembership of the element x € X to the set I, respec-
tively, with the condition that 0 < u;(x) + v;(x) < 1. The degree of indeterminacy
mr(x) =1 —p(x) —vi(x).

Yager”'! proposed a novel concept of PFS to model the condition that the sum
of the degree to which an alternative x; satisfies and dissatisfies with respect to the
attribute C; is bigger than 1, while the IFS cannot deal with it.
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Figure 1. Comparison of spaces of the PFNs and IFNs.

DErINITION 2 (°~!1). Let X be a universe of discourse. An PFS P in X is given by
P:{< xaMP(x)a UP(X) >|x EX}» (2)

where wp : X — [0,1] denotes the degree of membership and vp : X — [0,1]
denotes the degree of nonmembership of the element x € X to the set P, respec-
tively, with the condition that 0 < (up(x))> + (vp(x))* < 1. The degree of inde-
terminacy mwp(x) = \/1 — (p(x))? — (vp(x))2. For convenience, Zhang and Xu"
called (pup(x), vp(x)) a Pythagorean fuzzy number (PFN) denoted by p = (ip, vp).

Based on above definition, Zhang and Xu"? defined the distance between p, p>
as follows:

1
d(pi, p2) = 5(|(up.>2 — () + 1) = W)+ 1) = @) ) (3)

The main difference between PFN and IFN is their corresponding constraint con-
ditions, which is shown in Figure 1.°

DEFINITION 3 (1), For any PFN p = (u p» Vp), the score function of p be defined as
Sfollows:

s(p) = (up)* — (), 4)
where s(p) € [—1, 1]. For any two PFNs py, pa, if s(p1) < s(p2), then p1 < py. If

s(p1) > s(p2), then py > p>. If s(p1) = s(p2), then py ~ ps.

It is easily known that the score function defined in above is not unreasonable.
For example, when two PFNs p; = (0.5, 0.5) and p, = (0.6, 0.6), based on Defini-
tion 3, p; ~ p,. Butin fact, it is not reasonable, so we propose the accuracy function
and modify the comparison rules.
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DEFINITION 4. For any PFNs p = (l4,,, V), the accuracy function of p be defined as
follows:

Cl(P) = (I'Lp)z + (Vp)2a (5)

where a(p) € [0, 1].
For any two PFNs py, pa,

(1) if s(p1) > s(p2), then p; > p;
(2) if s(p1) = s(p»), then
(a) ifa(pi) > a(p>), then p; > pa;
(b) if a(p1) = a(p,), then p; ~ pa.

DErINITION 5 ('), Let p = (u,v), p1 = (U1, v1), and pr = (2, v2) be three
PFNs, and A > 0, then their operations are defined as follows:

(1) pi1U pr = (max{u, Lo}, min{vy, v,});
(2) p1 N py = (min{u, 1o}, max{vy, va});
(3) p° =@, w.

DEFINITION 6 (1?). Let p = (i, v), p1 = (i1, v1), and p = (j2, v-) be three PFNS,
and ) > 0, then their operations are defined as follows:

(1) p1® pr =/ 1]+ 13 — Uij3, vivo);
(2) p1® pr = (i, YV + v — v2V2);
(3) ap =1 —=(1—p2)vh;
(4) p* = 1= (1 —v2))

THEOREM 1 (13). Let p = (i, v), p1 = (1, v1), and p> = (2, v2) be three PFNS,
and » > 0,11 > 0, A, > 0, then,

(1) p1® p>=p® p1;

(2) p1®pr=pQpi;

(3) Mp1 ® p2) = Ap1 © Apa;
(4) Mp® )»2{7 = (A1 +A2)ps
(5) (p1 ® p2)* = p} ® ph;
(6) pll ® p)»z — p(’A1+)»z).

3. SOME OPERATIONS AND PROPERTIES FOR PFNS

DEFINITION 7. Let py = (41, vi) and py = (2, v2) be two PFNs, then

2_ .2 . "
(1) prepr= (/55 1), if i = po, v < minfvy, 2}

1—;1% v F2

V22 . . T
(2) 1@ p2= (g /57 if < minfpea, S50} vy = v,
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THEOREM 2. Let p = (i, v), p1 = (11, v1), and pr = (U2, v2) be three PFNs, and
A>0,11 >0,X >0, then

(1) (p) = (p)s
(2) Mp) = (p).
(3) ppUpr=prUpy;
(4) piNpy=prNpi;
(3) Mp1U p2) = Apy UApy;
(6) (p1 U py)* = p} U ph;
(7) M(p1© p2) = Ap1 © Apa, if i = pha, vy < minfv,, Z);
(8) (p1@ p2)* = pi @ p3, if i < minfpp, K24}, vy = vy;
(9) Mpo Aap = (A — A2)p, if A1 > Aoy
(10) p*' @ p™» = pM=72) if kg = A,

Proof. In the following, we shall prove (1), (3), (5), (7), (9) and (2), (4), (6), (8), (10)
can be proved analogously.

(1) (P = 0, = 0V T= (=),
P = (VI =7 0) = (Vo VT= =) = ()

(3) p1 U pr = (max{ui, o}, min{vy, vo}) = (max{u,, 1}, min{v,, vi})
= p2Upr.

(5) AMp1 VU pp) = A(max{ui, 2}, min{vy, v2})

v

<\/1 (1 — max { ul,uz}) min vl,vz

Api Udps = (~/ (- )u( L= (1= ) )
( { 1—M1*\/1 (1-u2)"t, min vl,v2>
-

\/1 (1 = max {u, u3})", min {v}, v }>

= A(p1 U p2).

(7) Since w1 > 2, vi < min{v,, VZI

}, we have

V17T2<U27T1
2.2 2.2
= v1v2 +vimy < v1v2+n1v2
vi v+

2 = 2 2
123 vy + 75

A A
v? v +

=\3) = 2 2
123 vy + 75

2 2\ * 2\ *
T
1_(1)12-1— 12) +<v12> <1
vy + 75 v;
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Ap1 © Apy = (\/1 - (1—2), vf) © ( 1—(1-ud), vg)

= A(p1 © p2).

(9) Since 1| > Ay, then
Mp©hap = 1= —p) v e (/1= (1= pu2y2, v
_ (\/1—<1—u2w — (1= (1= p2y) v_M>
R O S B
= (VI= =y, =)
= (A1 —22)p.

THEOREM 3. Let p1 = (1, vi) and py = (2, v2) be two PFNs, then

(1) pyUp;s=(piNp)s (2 piNp;=(pUp)s
(3) Pf @ PS_ =P ® Pz)“; 4 pi®ps = (PJ D p2)’;
(5) Pi©ps=(p1@p2),ifvi = v,y < minfpr, B2},

(6) pi @ p5=(p1O p), if 1 = pz, v1 < min{v,, 271},

2

Proof. In the following, we shall prove (1), (3), (5) and (2), (4), (6) can be proved
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analogously.

(1) piU ps = (v, 1) U (v2, n2) = (max{vy, vp}, min{py, p2})
(p1 N p2)° = (min{uy, w2}, max{vy, v2})° = (max{vy, v}, min{u;, w2})
= piYp;.

(3) P @ p5 = (1, 1) & (2, 12) = (v} +v3 —viv3, wipa)

(p1 ® p2)° = (ipta, /v +v3 — viv)" = (/v + v — viv3, wipo)

= p| @ ps.

(5) Since v; > vy, 1 < min{u,, %}, we have

2_ 2
Vi —Vy M
PO P =i, k) O (v, o) = (,/ 2, —)
I—vy w2
2 2\ 2_ 2
c I Vi — vy
(prop)' == ]1—) = L =2 =
H2 N T —v; 1—v uo

= p| © ps.

THEOREM 4. Let p1 = (1, vi) and py = (12, v2) be two PFNs, then

(1) (prUp)®(p1Np2)=p © pas
(2) (prUp)®(piNp2)=pi®pa; .
(3) (p1Up)©(piNpa)=pi©paifpr = po, vy < min{vy, 2L}

2 T b

(4) (prUp)@(piNp2)=pi @ psifvy = vy, uy < minfu,, 27}

T

Proof. In the following, we shall prove (1), (3) and (2), (4) can be proved analo-
gously.

(1) (p1U p2) ® (p1 N p2)

= (max{uy, na}, minfvy, v2}) @ (min{u, w2}, max{vy, v2})

= (max (it 3] + min . 2] = ma {3 i 3],

min{vy, v} max{vy, Vz})

= (vu% + 15— s, VlVZ)
= p1 @ p».

International Journal of Intelligent Systems DOI 10.1002/int
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(3) Since pu; > pa, v < min{v, 2}, then

(p1Y p2) © (p1 N pp) = (max{w, no}, min{vy, v2}) © (min{u, uo}, max{vy, v2})

_ (\/max{,u%,,u%} —min{u%,u%} min{vl,vz}>

1 — min {M%, M%} " max{v;, v,}

| mi—mm
I—M%,l)z

= p1© p2. O

THEOREM 5. Let p1 = (i1, vi) and py = (2, v3) be two PFNs, then
(1) (prUp)Npr=po;
(2) (prNp)Ups = pa;
(3) (p1© p2) ® p2 = pu. if 1 = pa, vi < min{vy, 2L}
(4) (p1 @ p2) ® p2 = pu, if vi = vy, i < minfus, 221,
Proof. In the following, we shall prove (1), (3) and (2), (4) can be proved analogously.
(1) (p1 Y p2) N pr = (max{py, pa}, min{vy, v2}) N (12, v2)

= (min{max{u, 2}, 2}, max{min{vy, v,}, v,})

= (12, v2) = pa.

(3) Since u; = pa, vy < minfy,, Ufg' }, then
1y — Mz v,

— | & (12, v2)
1-— /J, V2

2
2 2 2 2
M — K 2 M= K 2 M
5 2 +/’L - 5 2 M3, —W
J( 1—“5> ’ ( 1—“5> o

= (i1, v1) = p1.

(p1 © p2) ® p2

THEOREM 6. Let p = (i, v), p1 = (1, v1), and pr = (L2, v2) be three PFNs, then

(1) (prYp)Nps
(2) (p1Np)Ups
(3) (p1 U p2)@® ps
(4) (p1 N p2)® ps
(5) (p1Ypr)® ps
(6) (p1 N p2)® ps
(7) (p1Yp2)© ps

max{

(PN p3) U (p2 N p3);
(p1 Y p3) N (p2U p3);
(p1 ® p3) U (p2 © p3);
(p1® p3) N (P2 © p3);
EPI ® p3) U (p2 ® p3);
(

P1 ® p3) N (p2 @ p3); .
P 9 P3) U (p2 9 p3), i ps <min{ug, wo}, max{vy, v} < {v,

min{ UIZ

N

\Jz <1’

m -3 +

pio)
st V3 } 2 2

—|=
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(8) (p1Np)Ops= (pn o P3N (pz 6 p3), if wps < minfug, wo}, max{vy, v} < {vs,
T E mm(;x] “2 ;43 max{v V; ]
V3 ,U% " + 2
(9) (pi U Pz) Q@ ps = (p1 @ p3) U (Pz @ p3), if va <min{vy, v}, max{puy, o} < {ua,
P, py 2, T “;_ 4 '““: ol <,
(10) (p1Np) @ p3 = (p1 @ P3) n (Pz @ p3), if vs <min{v;, v}, max{p, w2} < {ua,

max{v 1 vy ) L3 mm(u “2}

il 2}
M3 35505 -

<1;

<1

v "3
Proof. In the following, we shall prove the (1), (3), (5), (7), (9) and the (2), (4), (6),
(8), (10) can be proved analogously.
(1) (prUp)Nops

= (max{u, no}, minfvy, v2}) N (U3, v3)

= (min{max{p1, u}, u3}, max{min{vy, v.}, v3})

= (max{min{u, w3}, min{u,, pu3}}, min{max{v;, v3}, max{v,, v3}})

= (min{u1, us}, max{vy, v3}) U (min{ps, 3}, max{vy, vs})

= (p1 N p3)U(paN p3).

(3) (P U p2)® ps
= (max{py, uo}, min{vy, v2}) @ (U3, v3)

= (/max{u%, 12} + 422 — max{u, p2hd, min{v,, w}w)

= <\/(1 — ud)max{u?, u3} + u3, min{vvs, V2V3}>

(p1 ® p3) U (p2 ® p3)
VI s — i, V1U3> U (w/ué + ui — u3ui, vm)

<max{\//t? + U3 — pin3. \/ui + w3 — p3p3}, minfvvs, V2V3}>

ax{\/(l — uDuT + U3, \/(1 — u3)u3 + p3}, min{vvs, vm})

<\/(1 — p2ymax{u3, 3} + i3, min{vyvs, sz3}>
= (p1 U p2) @ ps.
5 (Pp1Up)®ps3

= (max{u, no}, minfvy, v2}) ® (i3, v3)

= (max{,u], o}, \/min{vlz, v3} + v — min{v}, vzz}v32>

- (max{m, obits, /(1 — v min{u?, 12 + )
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(P1 ® p3) U (p2 ® p3)

= Gurpts, V7 + 02— VD) U aps, 03 + 02 — v2v?

= (max{,ul,u3, o3}, min {\/vl2 +v2 —vh3, \/v§ + v — v22v32}>

= (max{ul, Uatins, \/(1 — v%) min{vlz, vzz} + v%)

= (p1Y p2) ® p3.

2 B 2 2
NG min{vy,vy}
3 <
VZ = 1’

(7) Since w3 < min{u;, uo}, max{vy, v2} < {vs, V3%, el B 2

then

(p1U p2) © ps
= (max{p, p2}, min{vy, 1,}) © (U3, v3)

o Jmax{ui, p3} — p3 minfv;, v}
1— ,bLg ’ V3
(p1© p3)U(p2© p3)
I e e RO il R
1—u? v 1—u? v

_ e T T [viom
= | max , ,min{ —, —
11— ,LL% 1-— /J% V3 V3

= (p1 U p2) © ps.
. . - P min[vz,vz)—v2 max{uz,/tg)
Ince vz < minyvy, Vo, maxyy, loj < {43, U3, U3-=4, R 2 =5
©) S < min{vy, v}, max{p, o} < { ok — oy =1
7 -3 43
then
(P1Up2) @ p3

(max{u, uz}, min{vy, v2}) @ (3, v3)

12 42 2
max(uy, ) [min {vl , v2} -3

M3 1—;

max{ﬂ &} min L R
s ws )’ L—vi’y 1—3

(p1@ p3) U (p2 @ p3)
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R A W P I
w1 —3 ws'\ 1=}
2.2 2.2
_ max{#l Mz} min Vi V3’ ) st
M3 3 1 —v; 1 —v;

=(p1U p2) @ ps.

O
THEOREM 7. Let p = (4, v), p1 = (11, v1), and pr = (Uy, Vo) be three PFNs, then

(1) prUpaUps=pUpsUpy
(2) piNpaNps=piNpsNpy;
(3) p1®p2®ps=p1 & p;® pa;
(4) P1® P2 @ ps=p1® p3® pa;
(5) 1O PO ps=p1Op3Opa if w1 =max{uy, pa}, vi < minfvpvz, vy 7H v TH,
Hi—p3— ﬂz*“z“z ”1 .
=3 1-1d) toz =l
(6) Pl @ P2 ps = P1 @ p3@ py,  if v = max{vy, v3}, wy < min{popus, ot ,/L3—
+v2\; + 1

(1 Vz)(l v3) 313

Proof. In the following, we shall prove the (1), (3), (5) and the (2), (4), (6) can be
proved analogously.

() prYUpaUps

= (u1, v1) U (2, v2) U (3, v3)
= (max{max{u, 42}, u3}, min{min{v;, v,}, v3})
= (max{max{u, 43}, u2}, min{min{vy, v3}, v,})

=p1YUpsUp;.
(3) p1® p2® ps
= (1, v1) @ (K2, v2) @ (U3, v3)

= ( i+ ud — i, vm) @ (13, v3)

= <\//L? + 13— uis + 15— (05 4 13 — i) 13, V1V3V3)

= (\/Mf + 13 = s+ s — (05 4 13— i) i, V1V3U3>

= p1 D p3 @ pa.

(5) Since v; < min{vyvs, V27, V3 '} w1 = max{ua, s}, i MHLZ)M +

33 1, then
(—p3)(1-p3 7 = Lothe

vy V3

P1© p2Ops
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2
n v
( 2 Mz l) © (13, 13) =
l—u " vy

1i— 3= m+wm
(1 — uz) (1 — IM RS

|
P1ODp:© p )
|
3

w2 )
- ( 11— M3 l) O (U2, 12) =

::/M—M M3+ 1
(1=p3) (1= p3) "vavs

=Pp1© p2O ps.

O
THEOREM 8. Let p = (u, v), p1 = (11, v1), and py = (Lo, v2) be three PFNS, then

(1) ppO©P2Op3=p © (2 ® p3), if = max{uo, us} vy < minfvyvs, L}

mi—n3— “z“‘z”x .
(1-3)(1—113) + VZV; s =1
(2) pL@ p2 @ ps = p1 Q@ (p2 ® p3), if vi > max{v, vs}, oy < min{pops, K21},
vl v7 v,’ 1

(1-v3)(1- u%)

Proof. For three PFENs p, pi, p», we have

U771 v} w3 —pd+udud
(1) Since p; > wo, vi < min{vyvs, =71}, ——

< 1, then
— u%u% (]—;4%)(1—;1%) -

P1O P2 p3 = (W1, 1) © (12, v2) © (U3, v3)
O e T R
(1=p3) (1= p3) " vovs
P1O(P2® p3) = (U1, V) O (w/uﬁ +ud — Wi, v2v3)
e et R 1 |
(i) (- o

=p1O PO p;3

2 2 2.2
i ; —3—v2+1303
2) Since v; > v, < min pamy vi—vi—vitvivi <
2 1=V, U = {raus, = Y =5 u’u% D) 1, then

D1 @ pr@ p3 = (11, v1) @ (U2, v2) @ (13, V3)

o m vl — v — v +vh?
S \ans T\ (1=03) (1-13)
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P1@(p2® p3) = (U1, v1) @ (Mzus, v+ vi— v§v§)

o m vl — v — V3 + V32
e s Y )

=p1Qp2Qps3

4. PYTHAGOREAN FUZZY AGGREGATION OPERATORS AND
THEIR PROPERTIES

In this section, we introduce the Pythagorean fuzzy aggregation operators pro-
posed by Yager.”!? Then, some desirable properties, such as boundedness, idempo-
tency, and monotonicity, are discussed in detail.

DerINITION 8 (°). Let p; = (i, vi)i = 1,2, ...,n) be a collection of PFNs and
w = (W, Wa, ..., w,) betheweightvectorof p;(i = 1,2, ..., n), with Z?:l =1,
then a PFWA operator is a mapping PFWA: P" — P, where

n n
PFWA(p1, pa, -+, p) = (Z wi thi, Zwivl) : (6)
i=1 i=1

DEFINITION 9 (19). Let p; = (i, vi)(i = 1,2, ...,n) be a collection of PFNs and
w = (wy, wy, ..., w,)" betheweight vectorof pi(i =1,2,...,n),withy »_ =1,
then a PFWG operator is a mapping PFWG: P" — P, where

i=1

PFWG(pi., p2. ..., pn) = (1"[ ', ]‘[u;”'). %)
i=1

DerINITION 10 (19). Let p; = (i, vi)i = 1,2, ..., n) be a collection of PFNs and
w = (W, Wa, ..., w,) betheweightvectorof p;(i = 1,2, ..., n), with 27:1 =1,
then a PFWPA operator is a mapping PFWPA: P" — P, where

n 1/2 n 1/2
PFWPA(p1, p2. -, pn) = (Z wiu%) , (Z wm?) L®
i=1 i=1

DerINITION 11 (%), Let p; = (i, vi)(i = 1,2, ..., n) be a collection of PFNs and
w = (W, Wa, ..., w,)! betheweightvectorof p;(i = 1,2, ..., n), with Zfl:l =1,
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then a PFWPG operator is a mapping PFWPG: P" — P, where

n 1/2 n 12
PEWPG(p1 2. p) = ((1 -T1a —u%)“’") , (1 “T1a -v,?)“’f) )

i=1 i=1

()]

LEMMA 1 (*). Letx; > 0, w; > 0,i = 1,2,...,n,and Y /_, w; = 1, then

ﬁ(xi)w’ =< ’i Wi X; (10)

i=1 i=1

with equality if and only if x| = x3 = -+ - = X,,.

THEOREM 9. Let p; = (u;, vi)(i = 1,2, ..., n)beacollection of PFNs, p = (i, v) is
also PFN, and w = (wy, wa, ..., w,)! be the weight vector of them, Z?:l w; =1,
then

(1) PFWA(p1®p. p2®p,....pn®p)=PFWA(P1® P, p2®p,.... P @ D)
(2) PFWPA(p1® p,p2®p,...,pn®p) = PFWPA(p1 @ p, 2 @ P, ..., Pn ® P);
(3) PEWPG (p1® p,p2®p,....Pn®p) = PFWPG(p1 ® p, p2® P, ..., Py ® p);
(4) PEFEWG (p1® p,p2®p, ..., Pn®p) = PFWG(p1 @ p, p2 & P, ..., Py Q D).

Proof. In the following, we shall prove the (1), (3) and the (2), (4) can be proved
analogously.

(1) Forany p; = (u;, vi)(i =1,2,...,n), we can get

\/u,-z +p?—uin? > \/Z/L,-zuz —uin? =i,

\/vf +v2 — 2?2 > \/21),.21)2 — V2V =,

i i

ie.,

n n n n

2 2 2 2
E Wiy pf + P = pip? > E W i s E wiy/ v + 12 — VP2 > E w;v; V.
i=1 i=1 i=1 i=1

Since PFWA PL®p. P2 ®Pp . P ®p)= Qo wi/ui + 1 — pip?,
2?:1 w;v;v),

PFWA (p1 ® p, pr® p, ..., pa ® p) = <Z Wi, Y wiyJv? 4 02 — V?vz) :
i=1 i=1

According to Definition 3, the proof is proved.
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(3) Forany p; = (u;, vi)(i =1,2,...,n), we can get

Wi+ — it = 2’ — it = i’
= 1= (uf + 0’ —puip’) <1 —pi’

= (1 _ (/'L,z +N—2 _ Mizuz))w,’ < (1 _ M,?_N-z)wi

= [T G+ = di)™ < TT 0 = )"
i=1 i=1

=S 1=[100 = (F + 7 = udi?)" 21 = [T (1= iw)”

i=1 i=1

Similarly,

n

— 1—(vV2+v2 =22 w l—vv vi
[T , H
i=1 i=1

Since PFWPG (p1 ® p, p2® p, ..., P ® P)

n 1/2 n 1/2
= (1 10— (e 4+ = u?uz))“”') , (1 - ]_[(1 — vz)“")

i=1
PFWPG (p1 ® p, p2®@ P, ..., P ® P)

) 12 ., 12
= (1 [T -w 2)) ,(1—1_[(1—(vi2+v2—v,.2v2))w">

i=1 i=1

According to Definition 3, the proof is proved.

THEOREM 10. Let p; = (i, vi)(i = 1,2, ..., n)beacollection of PFNs, p =

isalso PEN, and w = (w1, ws, ..., w,)" be the weight vector of them, Z?=1 w; =1,

l’«2+ /4N2_3M4

ni =

. ™
5 , Vi < min{v, v}, then

(1) PFWA(p1© p,p2OPp,....,0. ©P)ZPFWA(PQ p1,p@ P2y, PO Py);
(2) PFWPA(p1 ©p,p2OPp,....P, ©p)>PFWPA(pQ p1,p Q@ p2s.... pQ Ppu)s

(3) PFWG(pr©p,p2OPp,....PnOP)ZPFWG(pQ p1,pQp2,..., P D Pn);

1147

O
(i, v)

(4) PFWPG (p,© p,p2Op,....,p. O p)>PFWPG(pQp1,pDpP2,...., P D D)

Proof. In the following, we shall prove the (1)(3) and the (2)(4) can be proved

analogously.

(1) By Definitions 7 and 8, we have that

n 2 2 n
Wi — K Vi
PFWA , yeres Pn = i ) i
(Poep.,op Pn©P) ;w\/ 1= 2 ;wv
PFWA(p@p],pcapz,...,p@pn)—(Zw, Zw,/l_v )
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2—p?
For a given p,- = (Wi, )i =1,2,...,n),inthe following, we denote f(u;) = '1’7#'2 —

DL U e L i M
ut 11— u%

prove g(u;) = puf — p2p? — pu? + pt > 0.
We take the derivative of g(u;) and obtain g'(w;) = 4} — 2u’u; = p;(4u? —2u?),

\/;/.2+«/4;/.2—3//,4 - \//L2+\/4/L4—3)L4
2 — 2
w2/ Au2 34 .
VIR 0, fe, f(ui) = 0,

and prove that f(u;) > 0, because pu?(1 — u?) > 0, so we only

because p? > ut, p; > = u, therefore, g'(u;) >0,

i.e., it is monotonically increasing, g(i;)min = &(

" 2
H ;r —HK *M“
Hence, =75 > z = e == w >y w
Slmllarly,
n n
v2—v? vz —v? v;
B > — = w; B = w;—.
1—v v 11— v
i i=1 i i=1
Later We prove the constraint condition, v < v =
vir? < vin? = v2(v? —|—7r2)<v2(v +rP) = vl —p?) <

V(1= i) = (uF = g +v2(1— 1) = (1 — wn? =
il +“ <.

1—-pu?

2
+ ‘)2 < 1. Similarly, * —

Because, (O_/_, w, “ s )2 + Qo wi ) = (O w,,/ + Yo wih)
i wil
(Z:l:l Wi - 1) )2 =L

Thus, according to Definition 3, the proof is proved.
(3) By Definitions 7 and 8, we have that

22 Vi n .. n L
M{, e+ Ly<yiw =1L Similarly, O3 wi;T)z +

ni — T
PFWG (p1© p,p2©Pp,..., PO Pp) = -1 7) ,

n w w; n ])2—])1.2 i
PFWG(p @ p1,p@pr,...,p Q@ pn) = - ’1_[ !

Now, v < v = vin? < vin? = 0202 + 1) < v P + ) = i - ) <
V21l —

) = (u«? - Mz)v2 +v(1=p) =1 —-pn =4

"
£ <.
M2+2_

S1m11ar1y,

- + “ =1
Based on Lemma 1 we can prove the constraint condition,

R ﬂ_z_ﬂz wiy\ 2 n . 2 n [;L~2—,U¢2 w; n v2 w;
(=) ) () s +11(%)
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=< iw,ﬁl"z__:j +Xn:wi§ = z":wi (M? i +%§) =< iwi =1
i=1 i=1 i=1 i=1

1—pu?

I—v;

1)2—1)2 '
Similarly, (n;l(;)"»>2+<n;;1< ;) 2 < 1.

From the proof in (1), we can easily get

i=1 1—p o1 \Hi
V2 _ vlz V; V2 — vlz " V; \ Wi n v2 _ vl2 i n v\ i
l—vizzv:( l—vf) (;) :ﬂ< 1—1)?) Zl:](;) ’
Thus, according to Definition 3, the proof is proved. (]
THEOREM 11. Let p; = (i, vi)(i = 1,2, ..., n)beacollection of PFNs, p = (i, v)
isalso PEN, and w = (w1, ws, ..., w,)! be the weight vector of them, Z?zl w; =1,
then

(]) PFWA(PI@ILPZ@P"P71®P)ZPFWA(I71’P2’sP»z)@P;
(2) PFWA (p1, p2s ..., pn) ® p = PFWA (p1, p2, ..., Pn) ® p;

(3) PFWG(PIEBP»PZ@Pssl’n@P)ZPFWG(Pl’PZ’sPn)®P’
(4) PFWG (p1, p2, ..., pn) ® p = PFWG (py, p2, ..., pn) @ p;

(5) PFWPA(p,®p,p2®p,...,p.®p) > PFWPA(pi, p2,...,Py) ® p;
(6) PFWPA (p1, p2, ..., pn)® p = PFWPA (p1, pa, ..., pn) ® p;

(7) PFWPG (pi® p,p2® p,..., p. ® p) = PFWPG (p1, p2, ..., Pn) ® p;
(8) PFWPG (p1, p2, ..., pn) ® p = PFWPG (p1, pa, ..., pn) ® p;

Proof. In the following, we shall prove the (1) and the (2)—(8) can be proved
analogously.

(1) Forany p; = (u;, vi)(i =1,2,...,n), we can get

\/M? +u? — pip? > \/ZM,-ZMZ — UPK = ik,

Z W;m = Z Wi i L
i=1 i=l1

Similarly, \/(27=1 w2+ v2— O wiv)P? > 3w
Since PFWA PL®p. P2 ®P P ®p) = wi/ i + 02 — i,
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> wivv),

n n 2 n 2
PFWA(pi1,p2,....pn)®p = Zwiﬂiﬂ7 (Zwivi) +v2— (Zwi‘%) v2
i=1 i=1

i=1

According to Definition 3, the proof is proved. U

THEOREM 12. Let p; = (i, vi)(i = 1,2, ..., n) be acollection of PFNs, p = (j4, v)
isalso PFN, and w = (wy, wa, ..., w,)" be the weight vector of them, Z:l:l w;, =1,
A > 1,then

(1) PFWA (\p1, Ap, ..., Aps) = PFWA (p}, p5, ..., p)):

(2) APFWA (p1, 2, ..., pn) = (PEWA (py, P2, ... pa))'s
(3) PFWG (Apy. Apa, .., Aps) = PFWA (p}, P}, ..., p});

(4) APFWG (p1, p2, ..., pu) = (PFWG (p1, pa, ..., pn));
(5) PFWPA (\p1, Apa, ..., Apy) = PEWA (p}, ph, ..., pb);
(6) APFWPA (p1, p2, ..., p,) = (PFWA (p1, pa, ..., p));
(7) PEWPG (Apy, Ap2, ..., Apy) = PEWPG (p}, p5..... p));
(8) APFWPG (pi, p2, ..., pn) = (PFWPG (p1, p2, ..., p))'s

Proof. In the following, we shall prove the (1) and the (2)—(8) can be proved
analogously.

(1) Forany p; = (u;, vi)(i =1,2,...,n), we have,

PEWA (Apy, APa, -, Apy) = (Z wiy/1— (1= p?)", Zw,-v,-’”) :
i=1 i=1
PFWA (p', ph.....p}) = (Z wip Y w1 - (1 - v,?)") .
i=1 i=1

In the following, we denote f(u;) = 1 — (1 — u?)* — (u?)* and prove that f(u;) > 0.
Based on Newton generalized binomial theorem, we can get (1 — u?)* + (u?)* < (1 —
ui+pHt =1. Thus, f(u) =0, ie, 1—1—pu)>@w) =/1-0—-p)=>
W= wiy/ 1= (1~ 1141'2))~ >0 wi

Similarly, Y77 wiy/1 — (1 —v))* = 37 wiv).

According to Definition 3, the proof is proved. n

THEOREM 13. Let p; = (W pi, Vi) and q; = (hgi, vgi)i = 1,2, ..., n) be two col-
lections of PFNs, and w = (wy, ws, ..., w,)] be the weight vector of them,
Y w; =1, then

(1) PFWA(p1®q1, p2® g2, ..., P ® qn) > PFWA(p1 @ q1, 2 @ @2y ..., Pp D G

(2) PFWA (plaPZa"'ﬁpn)@PFWA (qlqus"'sqn)EPFWA (plﬁpZa"'apn)®
PFWA (q1, 92, - - - » Gn);

(3) PFWG(pl@ql’pZGans"'spn@qn)ZPFWG(pl®q15p2®q25~“apn®(bz);

(4) PFWG  (p1, p2s..., p0) ®PFWG  (q1,92,...,q,) = PFWG  (p1, P2, ..., pn) ®
PFWG(qlquS"'vqn);

(5) PFWPA(pi @ q1, p2®q2, ..., Pa®qn) > PFWPA (p1 ® q1, P2 @ G2, ..., Pu @ q);
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(6) PEWPA (pi1, pa, ..., pn) ® PFWPA (q1,q2, ..., qx) = PFWPA (p1, p2, ..., Pu) ®
PFWPA (g1, G2y - - qu)s

(7) PFWPG (p1® q1, 2D G5 -+ Pn ® qu) = PFWPG (p1 ® 41, P2 ® G2, - - -, Pn ® ),

(8) PFWPG (p17p27'~"pr1)®PFWPG (ql»qu”’a(Zn)ZPFWPG (Pl»Pwa’Pn)@
PFWPG (q1, q2, - - - qn)-

Proof. In the following, we shall prove the (1) and the (2)—(8) can be proved
analogously.

(1) Forany p; = (ipi, Vpi)» qi = (Hgi, Vgi)i = 1,2,..., n), we have

PFWA (p1 ®q1, P2® Q25 - -+, Pn D Gn)

n n

_ 2 2 2,2

= < E w,-\/up,- + N’z]i - :u/pi:uqia § wivpivqi) s
i=1 i=1

PFWA(pl ®q]1p2®q25~~~1pn®qn)
= (Z wi#piﬂ«thWW)'
i=1 i=1

2 2 2 2 2 02 — 2 2 2 2 2
Because lupi + I“Lqi - H’pil“’“qi - M’pil’l’qi - l’l’pi + :qu - 2“’[)[”’5{[ z 2:““1?!':““qi - 2/“'“[)1'
143 = 2t pifgi(1 — ppiftyi) = 0, 50 we can obtain u2, + u2, — ju2,ul; = po 2, ie.,
1

n 2 2 2,2 7
Zi:l w[\/upi +/’Lqi - Mpi/*Lqi = Zi:l Wi U pi Kgi-

n
Similarly, 37, wi /v2 4 v — Vo vs = D0 wivpivg

pi " qi

According to Definition 3, the proof is proved. 0

THEOREM 14. Let p; = (W pi, vpi) and q; = (fgi, vgi)i = 1,2, ..., n) be two col-

lections of PFNs, and w = (wi,wy, ..., w,)" be the weight vector of them,
Yo wi=1,and x> 1, then

(1) PEWA (\p\ @ p,Ap2 @ p, ..., Ap, ® p) = PFWA (p{ @ p, p5 ® p, ..., P} ® p);
(2) APFWA (p1, p2, -, pn) @ p = (PEWA (py, p2, ..., pu))” ® p; ﬁ

(3) PEFWG (\p1 @ p,Ap2 @ p, ..., Ap, @ p) = PFWG (p} @ p, p @ p, ..., Pj ® p);
(4) APFWG (p1, P2, .-, p) ® p = (PFWG (p1, pa, ..., pa))" ® p; ,

(5) PFWPA(Ap; ® p,Ap2® p, ..., Ap, ® p) > PFWPA(p; ® p, p5 @ p,..., D, ® p);
(6) APFWPA (p1, p2, .., pa) @ p = (PFWPA (p1, pa, ..., p))* ® p;

(7) PEWPG (A\p; ® p, A2 ® P, ..., Apy ® p) = PFWPG (p} @ p, p5 @ p..... p; @ p);
(8) APFWPG (p1, p2, ..., pn) ® p = (PFWPG (p1, p2, ..., p))* ® p;

Proof. In the following, we shall prove the (1), and the (2)—(8) can be proved
analogously.

(1) Forany p; = (u;, vi)(i =1,2,...,n), we have,
PFWA (A\p1 © p, Ap2® p, ..., AP, ® P)
(Z \/1—(1— 1w (1—p Zwvu)
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PFWA (p} ® p, 5 ® p.-.., P, ® p)

i=1 i=l

In the following, we denote f(u;)=1—(1— p>)*(1 —u?)— (u?)*u* and prove
that f(u;) > 0. First, we denote g(u:) = (u?)* + (1 — u?)*, and take the deriva-
tive of g(w;) and obtain g'(1;) = 2Au;(u2)*~' — (1 — u?*~1), therefore, if
ni > %, g(u;) is monotonically increasing, and if wu; < %, g(u;) is mono-
tonically decreasing, so g(ui) < g(i)max = max{g(0), g(1)} = 1. Because (1 —
w1 = ) + (ui)p? < 1hence f(ui) =1— (1 —p)*(1 —p?) — (u)) u?> = 0=
Y wi/T— (= A1 =}y = Y wipl
Similarly, Y wi/1 — (1 — v2)(1 — vt > 37 w;vltv.
According to Definition 3, the proof is proved.

0

THEOREM 15. Let p; = (i, v;) be a collection of PFNs and w = (wy, wy, ..., w,)"
be the weight vector of them, Z;’zl w; = 1, then

(1) PFWA (p{, p5, ..., py) = (PFWA (p1, p2, ..., p))S;
(2) PFWG (p{, p5, ..., py) = (PFWG (p1, p2, - -+ Pu))’5
(3) PFWPA (pS, pS, ..., pS) = (PFWPA (p1, P2, ..., pu))s
(4) PFWPG (p$, pS, ..., p¢) = (PFWPG (D1, P2y -+ s Pu))’-

Proof. In the following, we shall prove the (1) and the (2)-(4) can be proved
analogously.

(1) Forany p; = (w;, v,)(i = 1,2,...,n), we have,
PFWA (p{, p5.....p.) = (iw;v[,iw;m>
=1 i=1
= i=
(Z wvi, iwiﬂi) = PFWA (p{. p5.---. P})
= i=1

(PFWA (p1, p2s -, Pu))°

O

THEOREM 16 (Boundedness). Let p,~ = (u;,vi)i =1,2,...,n) be a collection of

PFNs and w = (wy, wa, ..., w,)" be the weight vector of p;i(i = 1,2, ..., n), with

Yo, =1. Assume that p= = 1mm (i}, ut = 1max{,u,} VT = 1rn'in {vil, vt =
< <i< <i<n

max {v;}, then we can get
1<i<n

(]) (/“L7! U+) = PFWA (pls P2y --es pn) = (/’LJr? vi);
(2) (W=, v*) < PFWG (p1, pa, ..., pu) < (uF,v7);
(3) (/“L7! U+) = PFWPA (Pl’ P2 Pn) = (,bL+, Ui);
(4) (W=, v*) < PFWPG (p1, p2, .-, pn) < (uF,v7).
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Proof. In the following, we shall prove the (1), (3) and the (2), (4) can be proved
analogously.

Forany p; = (u;, vi)(i =1,2,...,n),wecangetu™ < pu;, < ut,v- <y <
vt =1,2,...,n). Suppose that ppin = (L™, V), pmax = (T, v7).

(D) Yy win” < 2 wie < 30wk, 3T wivT < 30w < 30wt
n 2 n 2
$(Pmin) = () = (vF)* = (Z wm) - (Z ww*) ,
i=1 i=1
n 2 n 2
$(Pma) = (W) = () = (Z wiu+> - (Z w,-v‘> ,
i=1 i=1
n 2 n 2
S(PFWA (p1, pa, - pa) = (Z w[u,) - (Z w,-v,-> :
i=1 i=1

Consequently, S(Pmin) < S(PFWA) < S(Pmax)-
Therefore, (™, vT) < PFWA (p1, D2y eees D) < (wt,vo).

B w =0 w2t = Q0 wiw )V vt = Q0w A v =
Qi wivH)H'2

Hence,
N 172 n 12 12
(Z wi(M_)z) =< (Z w; (i) 2) (Z w; (M+)2> >
i=1 i=1

n 172 n
(Z wi(V_)2> < <Z wi (v7) ) (Zw Wy ) :
i=1 i=l1

,, 1/2

$(pmin) = (W)’ — (v = (Zw(u )2> (Z w,-(v+)2> :
i=1

N 1/2

) (Z wf(v‘)2> :
i=1

n 1/2
S(PEWA (p1, P2, -+, Pa) = (Zw(u. ) - (Zwi(mz> :
i=1

$(Pra) = (W) = () = (ZwW)

Consequently, s(pmin) < s(PFWPA) < s(Ppax)-
Therefore, (™, v") < PFWPA (p1, pa, ..., pn) < (u,v7). 0

THEOREM 17 (Idempotency). If all p;(i =1,2,...,n) are equal, and p; = p =
(w, v), with ", w; =1, then

(]) PFWA(I’I»P27~"Pn)=P;
(2) PFWG (p1, p2, ..., Pu) = P;
(3) PFWPA(plsPZa“wpn):p;
(4) PFWPG (p1, p2, ..., pn) = P
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Proof. In the following, we shall prove the (1), (3) and the (2), (4) can be proved
analogously.
Since p; = p = (u,v) foralli =1,2,...,n,then

(1) PFWA (p1, pas....ps) =PFWA (p,p,....p) =1 wip, > iy wiv) = (u,v) =
p-

(3) PFWPA (py, p2, ..., px) = PFWPA (p, p, ..., p) = (O wiu)'?, (0 wivh)'?)
=(u,v)=p. 0

THEOREM 18 (Monotonicity). Let p; = (ip,, vp,) and q; = (lg, vg,)(0 =
1,2,...,n) be two collections of PFNs, if Ly, > p,, Vg, < Vp, foralli, then

(1) PFWA (p1, p2, ..., pu) S PFWA (q1, q2, ..., qn);
(2) PFWG (p1, p2, .., pn) < PFWG (g1, q2, - .., qn);
(3) PFWPA (py, p2, ..., pn) S PFWPA (q1,q2, - - -, qn);
(4) PFWPG (p1, p2, -+, pa) < PFWPG (q1,q2, - - -, qn).

Proof. In the following, we shall prove the (1), (3) and the (2), (4) can be proved

analogously.
Since ftg, > fp,, Vg < Vp, forall i, then

n n n n
(1) Do Witk < Dy Wikkgis Dimy Wivg, < D iy Wivp,.

Hence,

n 2 N 2
S(PFWA (p1, P2, .-+, Pu)) = (Zwiﬂp,) - (Zwivp,) ,
i=l1 i=1
n 2 n 2
S(PFWA (q1. 2. -, ) = (Zw,-uq) - (Zwivq,) :
i=l1 i=1

Apparently, s(PFWA (pi, pa, ..., pa)) < s(PFWA (q1, @2, - - -, qn))-
Consequently, PFWA (p1, p2s .., pn) < PFWA (q1, q2, - - ., qn)-
(3) D wilwy)? = 200 wilkg ), 200, wivg)* < 30 wivy)’

Hence,
. 12\ 2 " 12\ 2
S(PFWPA (p1. pa. ... p)) = (Zw,-<u,,,)2> - (Zw,.(v,,,.>2)
i=1 i=1
= > wil,) = Y wiv,)
i=1 i=1
2

172

s(PFWPA (41,92, - - - » qn))

n 1/2 2 n
(Z wi(ﬂq, )2> - <Z wi(v‘[/’ )2)
i=1 i=1

wig)’ = ) wi(v,)?
2
i=1 i=1
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Apparently, s(PFWPA (py, pa, - .-, pa)) < S(PFPWA (41, q2, - - - » qu))-
Consequently, PFWPA (py, pa, ..., pn) < PFPWA (q1, @2, - - -, Gn)- 0

5. A PF-SIR APPROACH TO MAGDM WITH PYTHAGOREAN FUZZY
INFORMATION

Assume that in a Pythagorean fuzzy group decision-making problem, the
weights and the attribute values all take the form of Pythagorean fuzzy information.
Let X = {x1, xo, ..., x,,} be a discrete set of alternatives, and C = {c1, ¢3, ..., Cy}
be a finite set of attributes. Suppose that E = {e}, e, ..., ¢;} be a set of experts
with weight vector W = {W, W,, ..., W;}. Assume that P(k) = (p;l;))mxn(i =
,2,....m;j=1,2,...,n;k =1,2,...,1)is the Pythagorean fuzzy decision ma-
trix, where pfjf) denotes the attribute value that alternative x; satisfies the attribute
c; given by expert e;. The attribute weights decision matrix is w = (w(ik))lx,,, where

w® denotes that the weight value of the attribute ¢; given by expert e;.
In the following, we will propose a novel approach based on PF-SIR with
Pythagorean fuzzy information.

Step 1. Determine the individual measure degree &.(k = 1,2, ..., ) via the weights of experts,
which take the form of PFEs. The relative closeness coefficient is obtained as follows:

B d(W,, W)
5 = d(We, W) +d(W, W)’ (I

where W~ = (mkin{uk}, m?x{vk}), Wt = (ml?x{uk}, mkin{vk}). It is easily obtained that

0<W,<landif& — 1,then W, — WH;if & — 0, then W, — W~
Step 2. Normalize the &.(k = 1, 2, ..., [) to make their sum into a unit and get as follows:

&
22:1 & 7

G = (12)

we get the normalized vector of real numbers ¢ = (¢, &, ..., &)7 as individual measure
degrees.
Step 3. Utilize the PFWA operator to aggregate individual viewpoints into group viewpoints as
follows:
(a) individual decision matrix integration:

1
5, = PFWA, (pl(/l)y pff),...,pfj)) = (Z Cm,/ Z <A>) (13)
k=1

k=1

(b) individual attributes’ weights integration:
i
= PFWA,, ( M w;Z}, . <l>) (Z Cku(k) ZQU;I{)) (14)
k=1
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From this step, the group integrated decision matrix p = (ﬁij),,,x,, and the attribute
weights vector w = (wy, W, ..., w,) are achieved.
Step 4. Obtain Pythagorean fuzzy superiority/inferiority matrix
(a) Obtain the performance function f;;

_ d(pi;.p)
ij = ij) = — —_— ——» 15
fu = 1)) d(;;, p)+d(py;, P (1>
where p~ = {c;, (min{w;;}, max{v;; D}, p* = {c;, (max{u;;}, min{v;;})}. It is easily

obtained that 0 < fi; < 1andif fi; — 1,thenp;; — phif fij — 0, thenp;; — p~.
(b) Obtain the preference intensity P1;(x;, x;)

Wedefine P1;(x;, x,)(t,i =1,2,...,m,t #i;j=1,2,...,n)as the preference in-

tensity of alternative x; over alternative x; to the corresponding attribute c;, which is

given as follows:

Pli(xi, x:) = ¢;(fi; — fij) = ¢;(d), (16)

where ¢;(d) is a nondecreasing function from the real number to [0,1]. Normally,
¢;(d) can be chosen from six generalized threshold functions,'® or defined by the
experts themselves.

(c) Obtain superiority matrix and inferiority matrix
Superiority index (S-index): S = (S;; ) xn

Sy=Y_ PlLi(x,x)=Y_ ¢;j(fy — fi); a7
=1 t=1
Inferiority index (I-index): I = (I;; )i xn
Lj =Y PLix.x)= Y ¢;(fj— fi) (18)
t=1 t=1

Step 5. Compute the superiority flow and inferiority flow as follows:
S-flow

1

n 1 1
¢~ (x;) = PFWA, (w1, Wy, ..., W,) = Z <Sij Z{ku(jk)) , Z (Sij kavj-k)>
1

j=1 k= j=l1 k=1

19

I-flow

n

n 1 1
¢~ (x;) = PFWA;, (Wi, Wy, ..., W,) = Z (Iij Z{kﬂ“) , Z (I[j Z {kv;k)>

j=1 k=1 j=1 k=1

(20)

Then, according to Equation 5, we compute the score function of corresponding S-flow
¢~ (x;) and I-flow ¢=(x;), respectively. Hence, we get S-flow and I-flow of alternative
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x; as x; (¢~ (x;), =(x;)). Apparently, if the bigger S-flow ¢~ (x;) and the smaller I-flow
¢=(x;), the alternative x; is better.
Step 6. Superiority ranking Rule (SR-Rule):
SR-Rule 1. If ¢~ (x;) > ¢~ (x,) and ¢=(x;) < ¢=(x;), then x; > x;;
SR-Rule 2. If ¢~ (x;) > ¢~ (x;) and ¢=(x;) = ¢p=(x,), then x; > x;;
SR-Rule 3. If ¢~ (x;) = ¢~ (x,) and ¢=(x;) < ¢=(x;), then x; > x;.

Inferiority ranking Rule (IR-Rule):

IR-Rule 1. If ¢~ (x;) < ¢~ (x;) and ¢=(x;) > ¢d=(x,), then x; < x;;
IR-Rule 2. If ¢~ (x;) < ¢~ (x;) and ¢=(x;) = ¢~(x;), then x; < x;;
IR-Rule 3. If ¢~ (x;) = ¢~ (x;) and ¢p=(x;) > ¢ =(x,), then x; < x,.

Step 7. Combine SR-Rule and IR-Rule, we can get the best alternative x;(i =
1,2,...,m).

6. NUMERICAL EXAMPLES

Listed Internet companies play an important role in China’s stock market.
Performance of listed companies affects resources allocation of capital market and
has become a common concern of shareholders, creditors, government authorities,
and other stakeholders. An investment bank wants to invest a sum of money in
Internet stocks. So the investment bank hires three types of experts: market maker
e1, dealer e, and finder e; to evaluate the potential investment value. They choose
four Internet stocks in which the earnings ratio is higher than other stocks: (1) x; is
SINA; (2) x, is BIDU; (3) x3 is NETS; (4) x4 is BABA from three attributes: (1) ¢; is
the stock market trend; (2) c; is the policy direction; (3) c¢3 is the annual performance.
The three experts e;(k = 1, 2, 3) evaluate the Internet stocks x;(i = 1, 2, 3, 4) with
respect to the attributes ¢;(j = 1, 2, 3) and construct the following three Pythagorean

fuzzy decision matrices P(k) = (pgf))élxg, in Table I. Tables II and III show the

Table I. Pythagorean fuzzy decision matrices.

el 1 (&) Cc3

X1 (0.9,0.3) (0.8,0.1) 0.9,0.2)
x (0.5,0.7) 0.4,0.7) (0.8,0.1)
X3 (0.3,0.5) (0.8, 0.4) 0.3,0.8)
x4 (0.6,0.7) (0.5, 0.6) 0.4,0.2)
e c1 (653 c3

X 0.7,02) 0.9, 0.2) 0.7,0.2)
x (0.6,0.7) (0.5, 0.6) (0.6,0.2)
X3 (0.7,0.1) (0.6, 0.5) (0.8, 0.4)
x4 (0.6, 0.6) (0.5,0.8) (0.6, 0.4)
e3 cl (63 3

x| (0.8,0.1) (0.9,0.2) (0.8,0.1)
X (0.7, 0.6) (0.6,0.4) 0.7,0.2)
X3 (0.9, 0.4) (0.8, 0.6) 0.7,0.4)
X4 (0.8, 0.6) (0.7,0.5) (0.6,0.4)
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Table II. The weights of experts.

Experts PFEs
el (0.8,0.3)
e 0.9,0.4)
e3 0.7,0.2)
Table III. The weights of attributes.

C c3
el (0.8,0.3) (0.7,0.2) 0.6,0.4)
e (0.9,0.1) (0.8,0.3) (0.8,0.1)
e3 (0.6,0.2) (0.9,0.2) (0.8,0.2)

Table IV. The PF-SIR flows of Internet stocks.

Internet stocks ¢~ (x;) s(p~ (x;)) d=(x;) s(Pp=(x;))
x1 (SINA) (0.0221, 0.0064) 0.000446 0,0) 0
x (BIDU) (0.0147, 0.0043) 0.000198 (0.0074,0.0021) 0.00005
x3 (NETS) 0,0) 0 (0.0221, 0.0064) 0.000446
x4 (BABA) (0.0074, 0.0021) 0.00005 (0.0147,0.0043) 0.000198

weights of experts and attribute weights, respectively, which all take the form of

PFEs.

Then, we utilize the approach developed in Section 5 to get the most desirable

alternative(s), which involves the following steps:

Step 1. Determine the individual measure degree &, (k = 1, 2, 3) using Equation 11:

& = (0.4688,0.7273, 0.2727)".

Step 2. Obtain the normalized vector using Equation 12:

¢ = (0.3191, 0.4952, 0.1857)".

Step 3. The attribute weights can be obtained as using Equation 13:

w; = (0.8124, 0.1824), w, = (0.7867, 0.2495), w3 = (0.7362, 0.2143).

The aggregated decision values can be obtained as using Equation 14:

(0.7824,0.2133) (0.8681,0.1681) (0.7824, 0.1814)
(0.5867,0.6814) (0.4867,0.5948) (0.6824,0.1681)

(Pij)axs =

(0.6095, 0.2834) (0.7010, 0.4867) (0.6219, 0.5277)

(0.6371,0.6319) (0.5371,0.6805) (0.5362, 0.3362)
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Step 4. Obtain the performance function f;; using Equation 14:

1 1 0.9859
0 0.1746 0.7606
0.6147 0.4926 0.2840
0.1552  0.0999 0.3376

(fij)axs =

we set the threshold attribute function as follows:

{001 if d>0
¢k(d)—{o.00 if d<0

Obtain the superiority matrix (S-matrix) uisng Equation 16:

0.03 0.03 0.03
0 0.01 0.02

0.02 0.02 O

0.01 0 0.01

S =

Obtain the inferiority matrix (I-matrix) using Equation 17:

0 0 0
0.03 0.02 0.01

I'=1001 001 003
0.02 0.03 0.02

Step 5. Compute the superiority flow and inferiority flow using Equations 18 and 19, which are
shown in Table I'V.
Step 6. Combine Table IV with SR-Rule and the following can be obtained:

X1 > Xy > X4 > X3
and, combine Table IV with IR-Rule and the following can be obtained:
X1 > X3 > X4 > X3.
Step 7. According to the results of SR-Rule and IR-Rule, the most desirable investment value of

Internet stock is x;(SINA).

7. CONCLUSIONS

In this paper, two new operations subtraction and division over PFNs are
proposed. Based on the operations of PFNs, a series of new properties have been
discussed in detail. Meanwhile, based on Pythagorean fuzzy aggregation operators,
we explore their properties such as boundedness, idempotency, and monotonicity.
Finally, we propose a PF-SIR method and apply it to Internet stocks investment. In
the future, we will combine others methods with PFSs.
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