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In this paper, we define the Choquet integral operator for Pythagorean fuzzy aggregation operators,
such as Pythagorean fuzzy Choquet integral average (PFCIA) operator and Pythagorean fuzzy
Choquet integral geometric (PFCIG) operator. The operators not only consider the importance of
the elements or their ordered positions but also can reflect the correlations among the elements
or their ordered positions. It is worth pointing out that most of the existing Pythagorean fuzzy
aggregation operators are special cases of our operators. Meanwhile, some basic properties are
discussed in detail. Later, we propose two approaches to multiple attribute group decision making
with attributes involving dependent and independent by the PFCIA operator and multi-attributive
border approximation area comparison (MABAC) in Pythagorean fuzzy environment. Finally, two
illustrative examples have also been taken in the present study to verify the developed approaches
and to demonstrate their practicality and effectiveness. C© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION

Intuitionistic fuzzy set (IFS), initiated by Atanassov,1 is an extension of fuzzy
set theory.2 IFS is characterized by a membership degree and a nonmembership
degree, and therefore can depict the fuzzy character of data more comprehensively
and detailedly. To obtain a decision, an important step is the aggregation of intu-
itionistic fuzzy numbers (IFNs). Intuitionistic fuzzy aggregation operators are the
most widely used techniques for aggregating IFNs. In the past decades, a series of
intuitionistic fuzzy aggregation operators have been developed.3,13

Recently, Yager14 proposed Pythagorean fuzzy set (PFS) characterized by a
membership degree and a nonmembership degree which satisfies the condition that
the square sum of its membership degree and nonmembership degree is less than or
equal to 1. Yager and Abbasov15 gave an example to state this situation: A decision
maker gives his support for membership of an alternative is

√
3

2 and his against
membership is 1

2 . Owing to the sum of two values is bigger than 1, they are not
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available for IFS, but they are available for PFS since (
√

3
2 )2 + ( 1

2 )2 ≤ 1. Obviously,
PFS is more capable of than IFS to model the vagueness in the practical multiple
attribute decision-making (MADM) problems. Based on the modificatory TOPSIS
method,16 Zhang and Xu17 developed an extension of Technique for Order Prefer-
ence by Similarity to an Ideal Solution (TOPSIS) to MADM with PFS information.
Yang et al.18 pointed out an error to the proof in Zhang and Xu.17 Yager19 proposed a
series of aggregation operators: Pythagorean fuzzy weighted average (PFWA) oper-
ator, Pythagorean fuzzy weighted geometric average (PFWG) operator, Pythagorean
fuzzy weighted power average (PFWPA) operator, and Pythagorean fuzzy weighted
power geometric (PFWPG) operator and applied them to MADM problems. Peng
and Yang20 discussed their relationship and proposed a superiority and inferior-
ity ranking (SIR) multiple attribute group decision-making (MAGDM) method.
Meanwhile, inspired by soft set theory21 and linguistic set theory,22 they proposed
Pythagorean fuzzy soft sets23 and Pythagorean fuzzy linguistic sets,24 respectively.
Gou et al.25 developed several Pythagorean fuzzy functions and investigated their
fundamental properties such as continuity, derivability, and differentiability in de-
tail. Zhang26 presented a hierarchical qualitative flexible (QUALIFLEX) multiple
criteria approach with the closeness index-based ranking methods for multicriteria
Pythagorean fuzzy decision analysis. Beliakov and James27 focused on how the
notion of “averaging” should be treated in the case of Pythagorean fuzzy numbers
(PFNs) and how to ensure that the averaging aggregation functions produce outputs
consistent with the case of ordinary fuzzy numbers. Reformat and Yager28 applied
the PFNs in handling the collaborative-based recommender system. Bustince et al.29

reviewed the definitions and basic properties of the different types of fuzzy sets that
have appeared up to now in the literature and pointed out that in any case IFSs are
PFSs. Li et al.30 introduced a knowledge checking service selection method in the
Pythagorean fuzzy environment. Peng and Yang31 extended the Pythagorean fuzzy
sets to that of interval-valued Pythagorean fuzzy sets, which can describe the data
more accurately and precisely and also developed an interval-valued Pythagorean
fuzzy elimination and choice translating reality (ELECTRE) method to solve the
MAGDM problem with interval-valued Pythagorean fuzzy numbers.

The aggregation operators proposed by Yager19 are linear in nature and do
not consider the interdependency or interactive characteristics of decision criteria
or preferences of decision makers. Sugeno32 introduced fuzzy measure to model
interaction phenomena among the decision criteria33 and was used in many MADM
problems with interdependent decision criteria.34,35 From the above analysis, we
can see that in general, the assumption of independency of criteria is too strong to
be satisfied in many MADM and MAGDM problems. Motivated by the Choquet
integral,36,37 some scholars have extended it to solve the decision-making problems
with different fuzzy environments, such as in intuitionistic fuzzy environment,38,40

interval-valued intuitionistic fuzzy environment,41, hesitant fuzzy environment,42

multiset hesitant fuzzy environment,43 dual hesitant fuzzy environment,44 interval-
valued intuitionistic hesitant fuzzy environment.45 However, all of them fail to the
Pythagorean fuzzy environment using the Choquet integral. Therefore, we develop
some Pythagorean fuzzy Choquet integral aggregation (PFCIA) operators, such as
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a Pythagorean fuzzy Choquet integral averaging operator, whose prominent char-
acteristic is that they can not only consider the importance of the elements or their
ordered positions but also reflect the correlations of the elements or their ordered
positions.

The multiattributive border approximation area comparison (MABAC) method
is a new MADM method proposed by Pamucar and Cirovic.46 It has a simple
computation process, systematic procedure, and a sound logic that represents the
rationale of human decision making. Hence, it is an interesting research topic to
apply the MABAC in a R&D project selection process to rank and determine the
best project under the Pythagorean fuzzy environment.

The remainder of this paper is organized as follows: In Section 2, the concepts
of IFS and PFS are briefly reviewed. In Section 3, the fuzzy measure and Choquet
integral are retrospected. Moreover, based on operational laws and fuzzy measure,
the Pythagorean fuzzy Choquet integral operators are proposed, and some of their
properties are investigated in detail. In Section 4, we explore two approaches to
MAGDM with attributes involving dependent and independent by the PFCIA oper-
ator and MABAC in Pythagorean fuzzy environment. In Section 5, two examples
are given to illustrate the concrete applications of the methods and to demonstrate
their feasibility and practicality. The paper is concluded in Section 6.

2. PRELIMINARIES

DEFINITION 1.1 Let X be a universe of discourse. An IFS I in X is given by

I = {〈xi, μI (xi), νI (xi)〉 | xi ∈ X}, (1)

where μI : X →[0,1] denotes the degree of membership and νI : X →[0,1] denotes
the degree of nonmembership of the element xi ∈ X to the set I , respectively, with
the condition that 0 ≤ μI (xi) + νI (xi) ≤ 1. The degree of indeterminacy πI (xi) =
1 − μI (xi) − νI (xi).

DEFINITION 2.14 Let X be a universe of discourse. A PFS P in X is given by

P = {〈xi, μP (xi), νP (xi)〉 | xi ∈ X}, (2)

where μP : X →[0,1] denotes the degree of membership and νP : X →[0,1] de-
notes the degree of nonmembership of the element xi ∈ X to the set P , respec-
tively, with the condition that 0 ≤ (μP (xi))2 + (νP (xi))2 ≤ 1. The degree of inde-
terminacy πP (xi) =

√
1 − (μP (xi))2 − (νP (xi))2. For convenience, Zhang and Xu17

called p(xi) = (μP (xi), νP (xi)) a PFN.
Based on the above definition, Zhang and Xu17 defined the distance between

p(xi) and p(xj ) as follows:

d(p(xi), p(xj )) = 1

2
(|(μP (xi))

2 − (μP (xj ))2| + |(νP (xi))
2 − (νP (xj ))2|

+ |(πP (xi))
2 − (πP (xj ))2|). (3)
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Figure 1. Comparison of spaces of the PFNs and IFNs.

The main difference between PFNs and IFNs is their corresponding constraint
conditions which are shown in Figure 1.15

DEFINITION 3.17 For any PFN p(xi) = (μP (xi), νP (xi)), the score function of p(xi)
is defined as follows:

s(p(xi)) = (μP (xi))
2 − (νP (xi))

2, (4)

where s(p(xi)) ∈ [−1, 1].

DEFINITION 4.20 For any PFN p(xi) = (μP (xi), νP (xi)), the accuracy function of
p(xi) is defined as follows:

a(p(xi)) = (μP (xi))
2 + (νP (xi))

2, (5)

where a(p(xi)) ∈ [0, 1].
For any two PFNs p(xi), p(xj ),

(1) if s(p(xi)) > s(p(xj )), then p(xi) 
 p(xj );
(2) if s(p(xi)) = s(p(xj )), then

(a) if a(p(xi)) > a(p(xj )), then p(xi) 
 p(xj );
(b) if a(p(xi)) = a(p(xj )), then p(xi) = p(xj ).

DEFINITION 5.17,20 Let p(xi) = (μP (xi), νP (xi)) and p(xj ) = (μP (xj ), νP (xj )), and
λ > 0, then the operations can be defined as follows:

(1) λp(xi) = (
√

1 − (1 − (μP (xi))2)λ, (νP (xi))λ);
(2) p(xi)λ = ((μP (xi))λ,

√
1 − (1 − (νP (xi))2)λ);

(3) p(xi) ⊕ p(xj ) = (
√

μ2
P (xi) + μ2

P (xj ) − μ2
P (xi)μ2

P (xj ), νP (xi)νP (xj ));
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(4) p(xi) ⊗ p(xj ) = (μP (xi)μP (xj ),
√

ν2
P (xi) + ν2

P (xj ) − ν2
P (xi)ν2

P (xj ));

(5) p(xi)  p(xj ) = (

√
μ2

P (xi )−μ2
P (xj )

1−μ2
P (xj )

, νP (xi )
νP (xj ) ), if μP (xi) ≥ μP (xj ), νP (xi) ≤ min{νP (xj ),

νP (xj )πP (xi )
πP (xj ) };

(6) p(xi) � p(xj ) = ( μP (xi )
μP (xj ) ,

√
ν2
P (xi )−ν2

P (xj )

1−ν2
P (xj )

), if νP (xi) ≥ νP (xj ), μP (xi) ≤ min{μP (xj ),

μP (xj )πP (xi )
πP (xj ) }.

THEOREM 1. 17,20 Let p(xi) and p(xj ) be two PFNs, and λ > 0, λ1 > 0, λ2 > 0, then

(1) p(xi) ⊕ p(xj ) = p(xj ) ⊕ p(xi);
(2) p(xi) ⊗ p(xj ) = p(xj ) ⊗ p(xi);
(3) λ(p(xi) ⊕ p(xj )) = λp(xi) ⊕ λp(xj );
(4) λ1p(xi) ⊕ λ2p(xi) = (λ1 + λ2)p(xi);
(5) (p(xi) ⊗ p(xj ))λ = p(xi)λ ⊗ p(xj )λ;
(6) p(xi)λ1 ⊗ p(xi)λ2 = p(xi)(λ1+λ2);
(7) λ(p(xi)  p(xj )) = λp(xi)  λp(xj ), if μP (xi) ≥ μP (xj ), νP (xi) ≤ min {νP (xj ),

νP (xj )πP (xi )
πP (xj ) };

(8) (p(xi) � p(xj ))λ = p(xi)λ� p(xj )λ, if νP (xi) ≥ νP (xj ), μP (xi) ≤ min {μP (xj ),
μP (xj )πP (xi )

πP (xj ) };
(9) λ1p(xi)  λ2p(xi) = (λ1 − λ2)p(xi), if λ1 ≥ λ2;

(10) p(xi)λ1 � p(xi)λ2 = p(xi)(λ1−λ2), if λ1 ≥ λ2.

3. PYTHAGOREAN FUZZY CHOQUET INTEGRAL OPERATORS

3.1. Fuzzy Measure and Choquet Integral Operator

Fuzzy measure (a nonadditive measure), initiated by Sugneo,32 makes a mono-
tonic property instead of an additive property. For MADM problems, it does not
need assumption that criteria or preferences are independent of one another and is
used as a powerful tool for modeling interaction phenomena in decision making. In
the Choquet integral model,36,37 where criteria can be dependent, a fuzzy measure
is used to define a weight on each combination of criteria, thus making it possible
to model the interaction existing among criteria. In this subsection, definitions of
fuzzy measure, λ-fuzzy measure, discrete Choquet integral, and Pythagorean fuzzy
Choquet integral operators are presented as follows:

DEFINITION 6.32 A fuzzy measure on X is a set function μ : P (X) → [0, 1], satisfying
the following conditions:

(1) μ(φ) = 0, μ(X) = 1 (boundary conditions);
(2) If A, B ∈ X and A ⊆ B, then μ(A) ≤ μ(B)(monotonicity).

Even though it is necessary to add the axiom of continuity when X is infinite,
it is enough to consider a finite universal set in actual practice. μ({x1, x2, . . . , xn})
can be considered as the grade of subjective importance of decision attribute
set {x1, x2, . . . , xn}. Thus, with the separate weights of attributes, weights of any
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combination of attributes can also be defined. Some remarks about any pair of
attribute sets A, B ∈ X with the condition A ∩ B ∈ φ are as follows:

(i) A and B are independent (without interaction) if μ(A ∪ B) = μ(A) + μ(B). It is called
an additive measure.

(ii) Positive interaction between A and B is exhibited if μ(A ∪ B) > μ(A) + μ(B). It is
called a superadditive measure.

(iii) Negative interaction between A and B is exhibited if μ(A ∪ B) < μ(A) + μ(B). It is
called a subadditive measure.

Since it is difficult to determine the fuzzy measure according to Definition 5,
therefore, to confirm a fuzzy measure in MAGDM problems, Sugeno32 presented the
following λ-fuzzy measure:

μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B), λ ∈ [−1, ∞), A ∩ B = φ. (6)

The parameter λ determines interaction between the attributes. In Equation 6, if
λ = 0, λ-fuzzy measure reduces to simply an additive measure. And for negative and
positive λ, the λ-fuzzy measure reduces to subadditive and superadditive measures,
respectively. Meanwhile, if all the elements in X are independent, and we have

μ(A) =
∑
xi∈A

μ({xi}). (7)

DEFINITION 7.47 Let f be a positive real-valued function on X and μ be a fuzzy
measure on X. The discrete Choquet integral of f with respect to μ is defined by

Cμ(f ) =
n∑

i=1

fσ (i)[μ(Aσ (i)) − μ(Aσ (i−1))], (8)

where σ (i) indicates a permutation on X such that fσ (1) ≥ fσ (2) ≥ · · · ≥ fσ (n),
Aσ (i) = {1, 2, . . . , i}, Aσ (0) = φ.

It is seen that the discrete Choquet integral is a linear expression up to a
reordering of the elements. Moreover, it identifies with the weighted mean (discrete
Lebesgue integral) as soon as the fuzzy measure is additive. And in some condition,
the Choquet integral operator coincides with the OWA (OWA) operator.48

3.2. Pythagorean Fuzzy Choquet Integral Operators

In this subsection, we define Pythagorean fuzzy Choquet integral operators to
take into account the interaction phenomena between the attribute represented by
the fuzzy measure.

DEFINITION 8.19 Let p(xi) = (μP (xi), νP (xi))(i = 1, 2, ∂, n) be a collection of PFNs
on X and w = (w1, w2, . . . , wn)T be the weight vector of p(xi)(i = 1, 2, . . . , n),
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with wi ∈ [0, 1],
∑n

i=1 wi = 1, then a PFWA operator is a mapping PFWA: P n →
P , where

PFWA(p(x1), p(x2), . . . , p(xn)) =
(

n∑
i=1

wiμp(xi),
n∑

i=1

wiνp(xi)

)
. (9)

DEFINITION 9.19 Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of
PFNs and w = (w1, w2, . . . , wn)T be the weight vector of p(xi)(i = 1, 2, . . . , n),
with wi ∈ [0, 1],

∑n
i=1 wi = 1, then a PFWG operator is a mapping PFWG:

P n → P , where

PFWG(p(x1), p(x2), . . . , p(xn)) =
(

n∏
i=1

(μp(xi))
wi ,

n∏
i=1

(νp(xi))
wi

)
. (10)

DEFINITION 10. Let p(xi) = (μP (xi), νP (xi))(i = 1, 2, . . . , n) be a collection of
PFNs on X and w = (w1, w2, ∂, wn)T be the weight vector of p(xσ (i))(i =
1, 2, . . . , n), with wi ∈ [0, 1],

∑n
i=1 wi = 1, {σ (1), σ (2), . . . , σ (n)} is a permuta-

tion of {1, 2, . . . , n}, then a PFOWA operator is a mapping PFOWA: P n → P ,
where

PFOWA(p(x1), p(x2), . . . , p(xn)) =
(

n∑
i=1

wiμp(xσ (i)),
n∑

i=1

wiνp(xσ (i))

)
. (11)

DEFINITION 11. Let p(xi) = (μP (xi), νP (xi))(i = 1, 2, . . . , n) be a collection of
PFNs on X and w = (w1, w2, . . . , wn)T be the weight vector of p(xσ (i))(i =
1, 2, . . . , n), with wi ∈ [0, 1],

∑n
i=1 wi = 1, {σ (1), σ (2), . . . , σ (n)} is a permutation

of {1, 2, . . . , n}, then a Pythagorean fuzzy ordered weighted geometric (PFOWG)
operator is a mapping PFOWG: P n → P , where

PFOWG(p(x1), p(x2), . . . , p(xn)) =
(

n∏
i=1

(μp(xσ (i)))
wi ,

n∏
i=1

(νp(xσ (i)))
wi

)
. (12)

Based on Definitions 7–10, we first give the definition of the Pythagorean fuzzy
Choquet integral operators as follows:

DEFINITION 12. Let p(xi) = (μP (xi), νP (xi))(i = 1, 2, . . . , n) be a collection of
PFNs on X, μ be a fuzzy measure on X, then a Pythagorean fuzzy Choquet in-
tegral average (PFCIA) operator is a mapping PFCIA: P n → P , where

PFCIA(p(x1), p(x2), . . . , p(xn)) =
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)),

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)
, (13)
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where {σ (1), σ (2), . . . , σ (n)} is a permutation of {1, 2, . . . , n} such that p(xσ (1)) ≥
p(xσ (2)) ≥ . . . ≥ p(xσ (n)), Aσ (k) = {xσ (j )|j ≤ k} for k ≥ 1, and Aσ (0) = φ.

Now we consider four special cases of the PFCIA operator:
(1) If Equation 7 holds, then μ({xσ (i)}) = μ(Aσ (i)) − μ(Aσ (i−1))(i = 1, 2, . . . , n), i.e., Equa-

tion 13 reduces to the PFWA operator shown in Equation 9.
(2) If μ(A) =∑|A|

i=1 wi, ∀A ∈ X, where |A| is the number of the elements in the set A, wi =
μ(Aσ (i)) − μ(Aσ (i−1))(i = 1, 2, . . . , n), where w = (w1, w2, . . . , wn)T , with

∑n
i=1 wi =

1, i.e., Equation 13 reduces to the PFOWA operator as shown in Equation 11.
(3) If μ(A) = 1, ∀A ∈ X, then PFICA(p(x1), p(x2), . . . , p(xn)) = max{p(x1), p(x2), . . . ,

p(xn)} = p(xσ (1)).
(4) If μ(A) = 0, ∀A ∈ X, then PFICA(p(x1), p(x2), . . . , p(xn)) = min{p(x1), p(x2), . . . ,

p(xn)} = p(xσ (n)).

DEFINITION 13. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, μ be a fuzzy measure on X, then a Pythagorean fuzzy Choquet integral
geometric (PFCIG) operator is a mapping PFCIG: P n → P , where

PFCIG(p(x1), p(x2), . . . , p(xn)) =
(

n∏
i=1

(μp(xi))
μ(Aσ (i))−μ(Aσ (i−1)),

n∏
i=1

(νp(xi))
μ(Aσ (i))−μ(Aσ (i−1))

)
, (14)

where {σ (1), σ (2), . . . , σ (n)} is a permutation of {1, 2, . . . , n} such that p(xσ (1)) ≥
p(xσ (2)) ≥ · · · ≥ p(xσ (n)), Aσ (k) = {xσ (j )|j ≤ k} for k ≥ 1, and Aσ (0) = φ.

Now we consider four special cases of the PFCIG operator:
(1) If Equation 7 holds, then μ({xσ (i)}) = μ(Aσ (i)) − μ(Aσ (i−1))(i = 1, 2, . . . , n), i.e., Equa-

tion 14 reduces to the PFWG operator shown in Equation 10.
(2) If μ(A) =∑|A|

i=1 wi, ∀A ∈ X, where |A| is the number of the elements in the set A, wi =
μ(Aσ (i)) − μ(Aσ (i−1))(i = 1, 2, . . . , n), where w = (w1, w2, . . . , wn)T , with

∑n
i=1 wi =

1, i.e., Equation 14 reduces to the PFOWG operator shown in Equation 12.
(3) If μ(A) = 1, ∀A ∈ X, then PFICG(p(x1), p(x2), . . . , p(xn)) = max{p(x1), p(x2), . . . ,

p(xn)} = p(xσ (1)).
(4) If μ(A) = 0, ∀A ∈ X, then PFICG(p(x1), p(x2), . . . , p(xn)) = min{p(x1), p(x2), . . . ,

p(xn)} = p(xσ (n)).

LEMMA 1. Let μ be a fuzzy measure, A ∈ X, and {σ (1), σ (2), . . . , σ (n)} is a permu-
tation of {1, 2, . . . , n}, then

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1))) = 1. (15)

Proof. It is obvious that
∑n

i=1(μ(Aσ (i)) − μ(Aσ (i−1)))

= μ(Aσ (1)) − μ(Aσ (0)) + μ(Aσ (2)) − μ(Aσ (1)) + · · · + μ(Aσ (n)) − μ(Aσ (n−1))

= μ(Aσ (n)) − μ(Aσ (0)) = μ(X) − μ(φ) = 1 − 0 = 1. �
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LEMMA 2. 31 Let 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and 0 ≤ x ≤ 1, then

0 ≤ ax + b(1 − x) ≤ 1. (16)

LEMMA 3. 31 Let 0 ≤ x ≤ 1, λ ≥ 0, and f (x) = xλ + (1 − x)λ, then

f (x) :

{
0 < f (x) ≤ 1 iff λ ≥ 1

f (x) ≥ 1 iff 0 ≤ λ ≤ 1

THEOREM 2. (Idempotency) Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a col-
lection of PFNs on X, and μ be a fuzzy measure on X. If all p(xi)(i = 1, 2, . . . , n)
are equal, i.e., for all i, p(xi) = p(x) = (μp(x), νp(x)), then

(1) PFCIA(p(x1), p(x2), . . . , p(xn)) = p(x);
(2) (2) PFCIG(p(x1), p(x2), . . . , p(xn)) = p(x).

Proof : In the following, we shall prove (1), and (2) can be proved analogously.
(1) According to Definition 11, for ∀i, p(xi) = p(x), then

PFCIA (p(x1), p(x2), . . . , p(xn))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)),
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(x),
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(x)

)
= (μp(x), νp(x)) = p(x) (According to Lemma 1).

THEOREM 3. (Monotonicity) Let p(xi) = (μp(xi), νp(xi)) and q(xi) =
(μq(xi), νq(xi))(i = 1, 2, . . . , n) be two collections of PFNs on X, and
μ be a fuzzy measure on X. If p(xσ (1)) ≤ p(xσ (2)) ≤ · · · ≤ p(xσ (n))
and q(xσ (1)) ≤ q(xσ (2)) ≤ · · · ≤ q(xσ (n)), and ∀i, p(xσ (i)) ≤ q(xσ (i)), i.e.,
μp(xσ (i)) ≤ μq(xσ (i)), νp(xσ (i)) ≥ νq(xσ (i)), then

(1) PFCIA(p(x1), p(x2), . . . , p(xn)) ≤ PFCIA(q(x1), q(x2), . . . , q(xn));
(2) PFCIG(p(x1), p(x2), . . . , p(xn)) ≤ PFCIG(q(x1), q(x2), . . . , q(xn)).

Proof. In the following, we shall prove (1), and (2) can be proved analogously.
(1) According to Definition 11, we have

PFCIA(p(x1), p(x2), . . . , p(xn))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)),
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)
,
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PFCIA(q(x1), q(x2), . . . , q(xn))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i)),
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)
.

Also, ∀i, μp(xσ (i)) ≤ μq(xσ (i)), νp(xσ (i)) ≥ νq(xσ (i)), and μ(Aσ (i)) −
μ(Aσ (i−1)) > 0, we have

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)) ≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i)),

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i)) ≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i)).

According to Equation 4, this proof is completed. �
THEOREM 4. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs on
X, and μ be a fuzzy measure on X, p−(x) = (min

i
{μp(xi)}, max

i
{νp(xi)}), p+(x) =

(max
i

{μp(xi)}, min
i

{νp(xi)}), then

(1) p−(x) ≤ PFICA(p(x1), p(x2), . . . , p(xn)) ≤ p+(x);
(2) p−(x) ≤ PFICG(p(x1), p(x2), . . . , p(xn)) ≤ p+(x).

Proof. In the following, we shall prove (1), and (2) can be proved analogously.
(1) According to Definition 11, we have

PFCIA(p(x1), p(x2), . . . , p(xn))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)),
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)
.

Obviously,

min
i

{μp(xi)} ≤ μp(xσ (i)) ≤ max
i

{μp(xi)}, min
i

{νp(xi)} ≤ νp(xσ (i)) ≤ max
i

{νp(xi)}.

Moreover, μ(Aσ (i)) − μ(Aσ (i−1)) > 0.
Therefore, we have

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1))) min
i

{μp(xi)} ≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i))

≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1))) max
i

{μp(xi)},
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n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1))) min
i

{νp(xi)} ≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1))) max
i

{νp(xi)}.

According to Lemma 1, we have

min
i

{μp(xi)} ≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i)) ≤ max
i

{μp(xi)},

min
i

{νp(xi)} ≤
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i)) ≤ max
i

{νp(xi)}.

According to Equation 4, this proof is completed. �
THEOREM 5. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, then

(1) PFCIA(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)) ≥ PFCIA(p(x1) ⊗ p(x), p(x2)
⊗ p(x), . . . , p(xn) ⊗ p(x));

(2) PFCIG(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)) ≥ PFCIG(p(x1) ⊗ p(x), p(x2)
⊗ p(x), . . . , p(xn) ⊗ p(x));

(3) PFCIA(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)) ≥ PFCIA (p(x1), p(x2), . . . ,
p(xn)) ⊗ p(x);

(4) PFCIG(p(x1) ⊕p(x), p(x2) ⊕p(x), . . . , PFCIA ⊕ p(x)) ≥ PFCIG(p(x1), p(x2), . . . ,
p(xn)) ⊗ p(x);

(5) PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIA (p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . ,
p(xn) ⊗ p(x));

(6) PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIG(p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . ,
p(xn) ⊗ p(x));

(7) PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x);
(8) PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊗ p(x).

Proof. In the following, we shall prove (1), and (2)–(8) can be proved
analogously.

(1) For any p(xσ (i)) = (μp(xσ (i)), νp(xσ (i))(i = 1, 2, . . . , n) and p(x) =
(μp(x), νp(x), we can have√

(μp(xσ (i)))2 + (μp(x))2 − (μp(xσ (i)))2(μp(x))2

≥
√

2(μp(xσ (i)))2(μp(x))2 − (μp(xσ (i)))2(μp(x))2 = μp(xσ (i))μp(x),√
(νp(xσ (i)))2 + (νp(x))2 − (νp(xσ (i)))2(νp(x))2

≥
√

2(νp(xσ (i)))2(νp(x))2 − (νp(xσ (i)))2(νp(x))2 = νp(xσ (i))νp(x).
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Moreover, μ(Aσ (i)) − μ(Aσ (i−1)) > 0; consequently,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2 + (μp(x))2 − (μp(xσ (i)))2(μp(x))2

≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i))μp(x),

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(νp(xσ (i)))2 + (νp(x))2 − (νp(xσ (i)))2(νp(x))2

≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νp(x).

According to Definition 11, we have

PFCIA
∫

(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2 + (μp(x))2 − (μp(xσ (i)))2(μp(x))2,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νp(x)

)
,

PFCIA (p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i))μp(x),
n∑

i=1

μ(Aσ (i))

− μ(Aσ (i−1))
√

(νp(xσ (i)))2 + (νp(x))2 − (νp(xσ (i)))2(νp(x))2

)
.

According to Equation 4, this proof is completed. �
THEOREM 6. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, λ ≥ 0, then

(1) PFCIA(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)) ≥ PFCIA(λp(x1) ⊗
p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x));

(2) PFCIG(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)) ≥ PFCIG(λp(x1) ⊗
p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x));

(3) PFCIA(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≥ PFCIA(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x));
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(4) PFCIG(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≥ PFCIG(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x));

(5) PFCIA(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≥ PFCIA(p(x1)λ ⊕
p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)), iff λ ≥ 1;
PFCIA(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≤ PFCIA(p(x1)λ ⊕
p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)), iff 0 ≤ λ ≤ 1;

(6) PFCIG(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≥ PFCIG(p(x1)λ ⊕
p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)), iff λ ≥ 1;
PFCIG(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x)) ≤ PFCIG(p(x1)λ ⊕
p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)), iff 0 ≤ λ ≤ 1;

(7) PFCIA(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≥ PFCIA(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)), iff λ ≥ 1;
PFCIA(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≤ PFCIA(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)), iff 0 ≤ λ ≤ 1;

(8) PFCIG(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≥ PFCIG(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)), iff λ ≥ 1;
PFCIG(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≤ PFCIG(p(x1)λ ⊗
p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)), iff 0 ≤ λ ≤ 1.

Proof. In the following, we shall prove (1), (5), and (2)–(4) with (6)–(8) can be
proved analogously.

(1) For any p(xσ (i)) = (μp(xσ (i)), νp(xσ (i)))(i = 1, 2, . . . , n) and p(x) =
(μp(x), νp(x), let

f (μp(xσ (i))) = (μp(xσ (i)))
2λ + (μp(x))2 − (μp(xσ (i)))

2λ(μp(x))2

− [(μp(x))2 − (μp(x))2(1 − μp(xσ (i)))
λ]

= (μp(xσ (i)))
2λ(1 − (μp(x))2) + (1 − μp(xσ (i)))

λ(μp(x))2.

Since 0 ≤ (μp(xσ (i)))2λ ≤ 1, 0 ≤ 1 − (μp(x))2 ≤ 1, 0 ≤ (1 − μp(xσ (i)))λ ≤ 1, 0 ≤
(μp(x))2 ≤ 1, and according to Lemma 2, we can have f (μp(xσ (i))) ≥ 0, i.e.,

(μp(xσ (i)))
2λ + (μp(x))2 − (μp(xσ (i)))

2λ(μp(x))2

≥ (μp(x))2 − (μp(x))2(1 − μp(xσ (i)))
λ.

Because μ(Aσ (i)) − μ(Aσ (i−1)) > 0, therefore,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2λ + (μp(x))2 − (μp(xσ (i)))2λ(μp(x))2

≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(x))2 − (μp(x))2(1 − μp(xσ (i)))λ.
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Similarly,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(νp(xσ (i)))2λ + (νp(x))2 − (νp(xσ (i)))2λ(νp(x))2

≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(νp(x))2 − (νp(x))2(1 − νp(xσ (i)))λ.

According to Definition 11, we have

PFCIA(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)) =
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2λ + (μp(x))2 − (μp(xσ (i)))2λ(μp(x))2,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(νp(x))2 − (νp(x))2(1 − νp(xσ (i)))λ

)
,

PFCIA(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(x))2 − (μp(x))2(1 − μp(xσ (i)))λ,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(νp(xσ (i)))2λ + (νp(x))2 − (νp(xσ (i)))2λ(νp(x))2

)
.

According to Equation 4, this proof is completed. �

(5) For any p(xσ (i)) = (μp(xσ (i)), νp(xσ (i)))(i = 1, 2, . . . , n) and p(x) =
(μp(x), νp(x), let

f (μp(xσ (i))) = 1 − (1 − (μp(x))2)(1 − (μp(xσ (i)))
2)λ − [(μp(xσ (i)))

2λ + (μp(x))2

− (μp(xσ (i)))
2λ(μp(x))2]

= (1 − (μp(x))2)[1 − ((μp(xσ (i)))
2)λ − (1 − (μp(xσ (i)))

2)λ],

g(νp(xσ (i)) = (νp(xσ (i))
2λ − [1 − (1 − (νp(xσ (i))

2)λ]

= (1 − (νp(xσ (i))
2)λ + ((νp(xσ (i))

2)λ − 1.

We denote s(μp(xσ (i))) = ((μp(xσ (i)))2)λ − (1 − (μp(xσ (i)))2)λ, t(μp(xσ (i))) =
((νp(xσ (i)))2)λ − (1 − (νp(xσ (i)))2)λ.
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According to Lemma 3, we can have

if 0 ≤ λ ≤ 1, then s(μp(xσ (i))) ≥ 1, t(μp(xσ (i))) ≥ 1

and if λ ≥ 1, then 0 ≤ s(μp(xσ (i))) ≤ 1, 0 ≤ t(μp(xσ (i))) ≤ 1.

Furthermore, we can have

f (μp(xσ (i))) ≥ 0, t(μp(xσ (i))) ≤ 0 when λ ≥ 1,

and f (μp(xσ (i))) ≤ 0, t(μp(xσ (i))) ≥ 0 when 0 ≤ λ ≤ 1, i.e.,

1 − (1 − (μp(x))2)(1 − (μp(xσ (i)))
2)λ ≥ (μp(xσ (i)))

2λ

+ (μp(x))2 − (μp(xσ (i)))
2λ(μp(x))2,

νp(x)(νp(xσ (i))
2λ ≤ νp(x)(1 − (1 − (νp(xσ (i))

2)λ) when λ ≥ 1, and

1 − (1 − (μp(x))2)(1 − (μp(xσ (i)))
2)λ ≤ (μp(xσ (i)))

2λ

+ (μp(x))2 − (μp(xσ (i)))
2λ(μp(x))2,

νp(x)(νp(xσ (i))
2λ ≥ νp(x)(1 − (1 − (νp(xσ (i))

2)λ) when 0 ≤ λ ≤ 1.

Moreover, μ(Aσ (i)) − μ(Aσ (i−1)) > 0, consequently,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(1 − (1 − (μp(x))2)(1 − (μp(xσ (i)))2)λ)

≥
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2λ + (μp(x))2 − (μp(xσ (i)))2λ(μp(x))2),

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(x)(νp(xσ (i)))
λ ≤

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(x)

√
(1 − (1 − (νp(xσ (i))2)λ)).

According to Definition 11, we have

PFCIA(λp(x1) ⊕ p(x), λp(x2) ⊕ p(x), . . . , λp(xn) ⊕ p(x))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

1 − (1 − (μp(x))2)(1 − (μp(xσ (i)))2)λ,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(x)(νp(xσ (i)))
λ

)
,
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PFCIA(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))

√
(μp(xσ (i)))2λ + (μp(x))2 − (μp(xσ (i)))2λ(μp(x))2,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(x)
√

1 − (1 − (νp(xσ (i))2)λ)

)
.

According to Equation 4, this proof is completed. �
THEOREM 7. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, λ ≥ 0, then

(1) λPFICA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFICA(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x);

(2) λPFICG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFICG(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x);

(3) PFICA(p(x1), p(x2), . . . , p(xn))λ ⊕ p(x) ≥ λPFICA(p(x1), p(x2), . . . , p(xn)) ⊗
p(x);

(4) PFICG(p(x1), p(x2), . . . , p(xn))λ ⊕ p(x) ≥ λPFICG(p(x1), p(x2), . . . , p(xn)) ⊗
p(x);

(5) λPFICA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFICA(p(x1), p(x2), . . . , p(xn))λ ⊕
p(x), iff λ ≥ 1;
λPFICA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≤ PFICA(p(x1), p(x2), . . . , p(xn))λ ⊕
p(x), iff 0 ≤ λ ≤ 1;

(6) λPFICG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFICG(p(x1), p(x2), . . . , p(xn))λ ⊕
p(x), iff λ ≥ 1;
λPFICG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≤ PFICG(p(x1), p(x2), . . . , p(xn))λ ⊕
p(x), iff 0 ≤ λ ≤ 1;

(7) λPFICA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≥ PFICA(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x), iff λ ≥ 1;
λPFICA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≥ PFICA(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x), iff 0 ≤ λ ≤ 1;

(8) λPFICG(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≥ PFICG(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x), iff λ ≥ 1;
λPFICG(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≥ PFICG(p(x1), p(x2), . . . , p(xn))λ ⊗
p(x), iff 0 ≤ λ ≤ 1.

Proof. The proof is similar to Theorem 6. �
THEOREM 8. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, λ ≥ 0, then

(1) PFCIA(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗p(x)) ≤ PFCIA(λp(x1),
λp(x2), . . . , λp(xn)) ≤ PFCIA(λp(x1) ⊕p(x), λp(x2) ⊕p(x), . . . , λp(xn) ⊕p(x));

(2) PFCIG(λp(x1) ⊗ p(x), λp(x2) ⊗p(x), . . . , λp(xn) ⊗p(x)) ≤ PFCIG(λp(x1),
λp(x2), . . . , λ p(xn)) ≤ PFCIG(λp(x1) ⊕ p(x), λp(x2) ⊕p(x), . . . , λp(xn) ⊕p(x));

(3) PFCIA(p(x1)λ ⊗ p(x), p(x2)λ ⊗p(x), . . . , p(xn)λ ⊗p(x)) ≤ PFCIA(p(x1)λ,
p(x2)λ, . . . , p(xn)λ) ≤ PFCIA(p(x1)λ ⊕p(x), p(x2)λ ⊕p(x), . . . , p(xn)λ ⊕ p(x));
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(4) PFCIG(p(x1)λ ⊗ p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)) ≤ PFCIG(p(x1)λ,
p(x2)λ, . . . , p(xn)λ) ≤ PFCIG(p(x1)λ ⊕p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x));

(5) λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≤ λPFCIA(p(x1), p(x2), . . . , p(xn)) ≤
λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x);

(6) λPFCIG(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≤ λPFCIG(p(x1), p(x2), . . . , p(xn)) ≤
λPFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x);

(7) PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≤ PFCIA(p(x1), p(x2), . . . , p(xn))λ ≤
PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊕ p(x);

(8) PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≤ PFCIG(p(x1), p(x2), . . . , p(xn))λ ≤
PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊕ p(x).

Proof. The proof is similar to Theorem 6. �
THEOREM 9. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, λ ≥ 0, then

(1) PFCIA(λp(x1), λp(x2), . . . , λp(xn)) ≤ PFCIA(p(x1), p(x2), . . . , p(xn)), iff 0 ≤ λ ≤ 1;
PFCIA(λp(x1), λp(x2), . . . , λp(xn)) ≥ PFCIA(p(x1), p(x2), . . . , p(xn)), iff λ ≥ 1;

(2) PFCIG(λp(x1), λp(x2), . . . , λp(xn)) ≤ PFCIG(p(x1), p(x2), . . . , p(xn)), iff 0 ≤ λ ≤ 1;
PFCIG(λp(x1), λp(x2), . . . , λp(xn)) ≥ PFCIG(p(x1), p(x2), . . . , p(xn)), iff λ ≥ 1;

(3) PFCIA(p(x1)λ ⊗ p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)) ≥ PFCIA(p(x1) ⊗ p(x),
p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)), iff 0 ≤ λ ≤ 1; PFCIA(p(x1)λ ⊗ p(x), p(x2)λ ⊗
p(x), . . . , p(xn)λ ⊗ p(x)) ≤ PFCIA(p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)),
iff λ ≥ 1;

(4) PFCIG(p(x1)λ ⊗ p(x), p(x2)λ ⊗ p(x), . . . , p(xn)λ ⊗ p(x)) ≥ PFCIG(p(x1) ⊗ p(x),
p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)), iff 0 ≤ λ ≤ 1; PFCIG(p(x1)λ ⊗ p(x), p(x2)λ⊗p(x),
. . . , p(xn)λ ⊗ p(x)) ≤ PFCIG(p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)), iff λ ≥
1;

(5) PFCIA(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)) ≥ PFCIA(p(x1) ⊕ p(x),
p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)), iff 0 ≤ λ ≤ 1; PFCIA(p(x1)λ ⊕ p(x), p(x2)λ⊕p(x),
. . . , p(xn)λ ⊕ p(x)) ≤ PFCIA(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)), iff λ ≥
1;

(6) (p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x), . . . , p(xn)λ ⊕ p(x)) ≥ PFCIG(p(x1) ⊕ p(x), p(x2) ⊕
p(x), . . . , p(xn) ⊕ p(x)), iff 0 ≤ λ ≤ 1; PFCIG(p(x1)λ ⊕ p(x), p(x2)λ ⊕ p(x),
. . . , p(xn)λ ⊕ p(x)) ≤ PFCIG(p(x1) ⊕ p(x), p(x2) ⊕ p(x), . . . , p(xn) ⊕ p(x)), iff λ ≥
1;

(7) (λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≤ PFCIA(p(x1) ⊗ p(x), p(x2) ⊗
p(x), . . . , p(xn) ⊗ p(x)), iff 0 ≤ λ ≤ 1; PFCIA(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp
(xn) ⊗ p(x)) ≥ PFCIA(p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)), iff λ ≥ 1;

(8) PFCIG(λp(x1) ⊗ p(x), λp(x2) ⊗ p(x), . . . , λp(xn) ⊗ p(x)) ≤ PFCIG(p(x1) ⊗ p(x),
p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)), iff 0 ≤ λ ≤ 1; PFCIG(λp(x1) ⊗ p(x), λp(x2) ⊗
p(x), . . . , λp(xn) ⊗ p(x)) ≥ PFCIG(p(x1) ⊗ p(x), p(x2) ⊗ p(x), . . . , p(xn) ⊗ p(x)),
iff λ ≥ 1.

Proof. It is trial. �
THEOREM 10. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, p(x) = (μp(x), νp(x)) be a PFN and μ be a fuzzy measure on X, λ ≥ 0, then

(1) λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≤ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x),
iff 0 ≤ λ ≤ 1; λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIA(p(x1), p(x2), . . . ,
p(xn)) ⊕p(x), iff λ ≥ 1;

(2) λPFCIG(p(x1), p(x2), . . . , p(xn)) ⊕p(x) ≤ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x),
iff 0 ≤ λ ≤ 1; λPFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x) ≥ PFCIG(p(x1), p(x2), . . . ,
p(xn)) ⊕ p(x), iff λ ≥ 1;
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(3) λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x) ≤ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗p(x),
iff 0 ≤ λ ≤ 1; λPFCIA(p(x1), p(x2), . . . , p(xn)) ⊗p(x) ≥ PFCIA(p(x1), p(x2), . . . ,
p(xn)) ⊗p(x), iff λ ≥ 1;

(4) λPFCIG(p(x1), p(x2), . . . , p(xn)) ⊗p(x) ≤ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊗ p(x),
iff 0 ≤ λ ≤ 1; λ PFCIG(p(x1) , p(x2), . . . , p(xn)) ⊗p(x) ≥ PFCIG(p(x1), p(x2), . . . ,
p(xn)) ⊗ p(x), iff λ ≥ 1;

(5) PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊕ p(x) ≥ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ p(x),
iff 0 ≤ λ ≤ 1; PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊕p(x) ≤ PFCIA(p(x1), p(x2), . . . ,
p(xn)) ⊕ p(x), iff λ ≥ 1;

(6) PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊕p(x) ≥ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ p(x),
iff 0 ≤ λ ≤ 1; PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊕p(x) ≤ PFCIG(p(x1), p(x2), . . . ,
p(xn)) ⊕ p(x), iff λ ≥ 1;

(7) PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≥ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ p(x),
iff 0 ≤ λ ≤ 1; PFCIA(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≤ PFCIA(p(x1), p(x2), . . . ,
p(xn)) ⊗p(x), iff λ ≥ 1;

(8) (8) PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≥ PFCIG(p(x1), p(x2), . . . , p(xn))
⊗ p(x), iff 0 ≤ λ ≤ 1; PFCIG(p(x1), p(x2), . . . , p(xn))λ ⊗ p(x) ≤ PFCIG(p(x1),
p(x2), . . . , p(xn)) ⊗ p(x), iff λ ≥ 1.

Proof. It is trial. �

THEOREM 11. Let p(xi) = (μp(xi), νp(xi)) and q(xi) = (μq(xi), νq(xi))(i =
1, 2, . . . , n) be two collections of PFNs on X, and μ be a fuzzy measure on X,
then

(1) PFCIA(p(x1) ⊕ q(x1), p(x2) ⊕ q(x2), . . . , p(xn) ⊕ q(xn))
≥ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ PFCIA(q(x1), q(x2), . . . , q(xn));

(2) PFCIG(p(x1) ⊕ q(x1), p(x2) ⊕ q(x2), . . . , p(xn) ⊕ q(xn))
≥ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊗ PFCIG(q(x1), q(x2), . . . , q(xn));

(3) PFCIA(p(x1) ⊕ q(x1), p(x2) ⊕ q(x2), . . . , p(xn) ⊕ q(xn)) ≥ PFCIA(p(x1) ⊗
q(x1), p(x2) ⊗ q(x2), . . . , p(xn) ⊗ q(xn));

(4) PFCIG(p(x1) ⊕ q(x1), p(x2) ⊕ q(x2), . . . , p(xn) ⊕ q(xn)) ≥ PFCIG(p(x1) ⊗
q(x1), p(x2) ⊗ q(x2), . . . , p(xn) ⊗ q(xn));

(5) PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ PFCIA(q(x1), q(x2), . . . , q(xn))
≥ PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ PFCIA(q(x1), q(x2), . . . , q(xn));

(6) PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ PFCIG(q(x1), q(x2), . . . , q(xn))
≥ PFCIG(p(x1), p(x2), . . . , p(xn)) ⊗ PFCIG(q(x1), q(x2), . . . , q(xn));

(7) PFCIA(p(x1), p(x2), . . . , p(xn)) ⊕ PFCIA(q(x1), q(x2), . . . , q(xn))
≥ PFCIA(p(x1) ⊗ q(x1), p(x2) ⊗ q(x2), . . . , p(xn) ⊗ q(xn));

(8) PFCIG(p(x1), p(x2), . . . , p(xn)) ⊕ PFCIG(q(x1), q(x2), . . . , q(xn))
≥ PFCIG(p(x1) ⊗ q(x1), p(x2) ⊗ q(x2), . . . , p(xn) ⊗ q(xn)).

Proof. In the following, we shall prove (1), and (2)–(8) can be proved
analogously.

(1) For any p(xσ (i)) = (μp(xσ (i)), νp (xσ (i))), q(xσ (i)) = (μq (xσ (i)), νq (xσ (i)))
(i = 1, 2, . . . , n), and according to Definition 11, we have

PFCIA(p(x1) ⊕ q(x1), p(x2) ⊕ q(x2), . . . , p(xn) ⊕ q(xn))

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
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×
√

(μp(xσ (i)))2 + (μq(xσ (i)))2 − (μp(xσ (i)))2(μq(xσ (i)))2,

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)
,

PFCIA(p(x1), p(x2), . . . , p(xn)) ⊗ PFCIA(q(x1), q(x2), . . . , q(xn))

=
((

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μp(xσ (i))

)
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i))

)
,

√√√√( n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

+
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

−
(

n∑
i=1

(μ(Aσ (i))−μ(Aσ (i−1)))νp(xσ (i))

)2( n∑
i=1

(μ(Aσ (i))−μ(Aσ (i−1)))νq(xσ (i))

)2
⎞⎠.

Since

(μp(xσ (i)))
2 + (μq(xσ (i)))

2 − (μp(xσ (i)))
2(μq(xσ (i)))

2 − (μp(xσ (i)))
2

(
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i))

)2

= (μp(xσ (i)))
2

⎡⎣1 −
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i))

)2
⎤⎦

+ (μq(xσ (i)))
2(1 − (μp(xσ (i)))

2) ≥ 0,

so

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))
√

(μp(xσ (i)))2 + (μq(xσ (i)))2

≥
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ(i−1)))μp(xσ (i))

)(
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))μq(xσ (i))

)
.
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Afterward, we denote

f =
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

+
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

×
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)2

≥ 2(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i)))(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i)))

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

×
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)2

=
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)(
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)
(

2 −
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)

∗
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

))

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)
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×
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)

=
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

[
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

(
2 −

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

∗
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)]

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)

×
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)

=
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

⎡⎣ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

×
⎛⎝2 −

n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))

∗
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

⎞⎠⎤⎦
−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)

×
⎛⎝ n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))νq(xσ (j ))

⎞⎠
=

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

⎡⎣ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

×
⎛⎝2 −

n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))
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∗
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

⎞⎠⎤⎦
−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

×
⎛⎝ n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))νq(xσ (j ))

⎞⎠⎞⎠

=
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

⎡⎣ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

⎛⎝2 −
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))

∗
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

⎞⎠
− νq(xσ (i))

⎛⎝ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))νq(xσ (j ))

⎞⎠⎤⎦
=

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

⎡⎣ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

×
⎛⎝2 −

n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))

∗
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))

⎞⎠
−
⎛⎝ n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))νq(xσ (j ))νq(xσ (i))

⎞⎠⎤⎦
=

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

⎡⎣ n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j ))
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×
⎛⎝2 −

n∑
j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νp(xσ (j ))

∗
n∑

j=1

(μ(Aσ (j )) − μ(Aσ (j−1)))νq(xσ (j )) − νp(xσ (j ))νq(xσ (i))

⎞⎠⎤⎦ ≥ 0.

Consequently,(
n∑

i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

+
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

−
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))

)2

×
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νq(xσ (i))

)2

≥
(

n∑
i=1

(μ(Aσ (i)) − μ(Aσ (i−1)))νp(xσ (i))νq(xσ (i))

)2

.

According to Equation 4, this proof is completed. �
THEOREM 12. Let p(xi) = (μp(xi), νp(xi))(i = 1, 2, . . . , n) be a collection of PFNs
on X, and μ be a fuzzy measure on X, then

(1) PFCIA(p(x1)c, p(x2)c, . . . , p(xn)c) = PFCIA(p(x1), p(x2), . . . , p(xn))c;
(2) PFCIG(p(x1)c, p(x2)c, . . . , p(xn)c) = PFCIG(p(x1), p(x2), . . . , p(xn))c.

Proof. It is trial. �

4 PROPOSED PFCIA-BASED MABAC FOR MAGDM PROBLEMS

4.1. Description of the Problems

4.1.1. Attribute Is Dependent

Consider a MAGDM problem that contains a discrete set of m alternatives,
expressed as A = {A1, A2, . . . , Am}. Suppose D = {d1, d2, . . . , dl} be a set of l
decision makers (DMs) that have the important degree of λ = (λ1, λ2, . . . , λl), and
λk(k = 1, 2, . . . , l) is a fuzzy number with

∑n
k=1 λk = 1. Let C = {c1, c2, . . . , cn}
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be a collection of n attributes. Assume that P (k) = (pk
ij )m×n be a Pythagorean fuzzy

matrix, where pk
ij is the PFN that the alternative Ai ∈ A can take with respect to

attribute cj ∈ C according to DM dk ∈ D.
Various steps used in the proposed PFCIA operator for MAGDM are explained

as follows:

Algorithm. (Attribute is dependent)

Step 1. Form a committee of the DMs, select the proper attributes, and ob-
tain the prospective alternatives for the decision-making problem with
the Pythagorean fuzzy decision matrix P (k) = (pk

ij )m×n(i = 1, 2, . . . , m; j =
1, 2, . . . , n; k = 1, 2, . . . , l), pk

ij = (μk
ij , ν

k
ij ).

Step 2. Construct the group Pythagorean fuzzy decision matrix P = (pij )m×n =
(μij , νij )m×n.

pij = PFWA(p1
ij , p

2
ij , . . . , p

l
ij ) =

(
l∑

k=1

λkμ
k
ij ,

l∑
k=1

λkν
k
ij

)
. (17)

Step 3. Normalize the Pythagorean fuzzy decision matrix P = (pij )m×n into P̃ =
(p̃ij )m×n = (μ̃ij , ν̃ij )m×n.

p̃ij =
{

(μij , νij ), cj is benefit attribute,
(νij , μij ), cj is cost attribute. (18)

Step 4. Reorder the p̃ij (j = 1, 2, . . . , n) for each alternative Ai(i = 1, 2, . . . , m) in a de-
scending order by Equation 4 or 5.

Step 5. Confirm the fuzzy measures of attribute sets of C. We take Equation 6 for deter-
mining the fuzzy measure.

Step 6. Aggregate the Pythagorean fuzzy information p̃i of alternative Ai(i =
1, 2, . . . , m).

p̃i = PFICA(p̃i1, p̃i2, . . . , p̃in)

=
⎛⎝ n∑

j=1

(μ(Cσ (j )) − μ(Cσ (j−1)))μ̃iσ (j ),

n∑
j=1

(μ(Cσ (j )) − μ(Cσ (j−1)))̃νiσ (j )

⎞⎠(19)

or

p̃i = PFICG(p̃i1, p̃i2, . . . , p̃in)

=
⎛⎝ n∏

j=1

(μ̃iσ (j ))
μ(Cσ (j ))−μ(Cσ (j−1)),

n∏
j=1

(̃νiσ (j ))
μ(Cσ (j ))−μ(Cσ (j−1))

⎞⎠ . (20)

Step 7. Compute the score function s(p̃i) of p̃i by Equation 4.
Step 8. Rank all the alternatives Ai(i = 1, 2, . . . , m), the most preferred alternative is the

one with the highest value of score function.
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4.1.2. Attribute Is Independent

Consider a MAGDM problem that contains a discrete set of m alternatives,
expressed as A = {A1, A2, . . . , Am}. Suppose D = {d1, d2, . . . , dl} be a set of l
DMs that have the important degree of λ = (λ1, λ2, . . . , λl), and λk(k = 1, 2, . . . , l)
is a fuzzy number with

∑n
k=1 λk = 1. Let C = {c1, c2, . . . , cn} be a collection of

n attributes with weight vector w = (w1, w2, . . . , wn), and
∑n

j=1 wj = 1. Assume
that P (k) = (pk

ij )m×n be a Pythagorean fuzzy matrix, where pk
ij is the possible value

that the alternative Ai ∈ A can take with respect to attribute cj ∈ C according to
DM dk ∈ D.

Algorithm 2. (Attribute is independent)

Step 1. Form a committee of the DMs, select the proper attributes, and ob-
tain the prospective alternatives for the decision-making problem with
the Pythagorean fuzzy decision matrix P (k) = (pk

ij )m×n(i = 1, 2, . . . , m; j =
1, 2, . . . , n; k = 1, 2, . . . , l), pk

ij = (μk
ij , ν

k
ij ).

Step 2. Construct the group Pythagorean fuzzy decision matrix P = (pij )m×n =
(μij , νij )m×n.

pij = PFWA
(
p1

ij , p
2
ij , . . . , p

l
ij

)
=
(

l∑
k=1

λkμ
k
ij ,

l∑
k=1

λkν
k
ij

)
. (21)

Step 3. Normalize the Pythagorean fuzzy decision matrix P = (pij )m×n into P̃ =
(p̃ij )m×n = (μ̃ij , ν̃ij )m×n.

p̃ij =
{

(μij , νij ), cj is benefit attribute,

(νij , μij ), cj is cost attribute.
(22)

Step 4. Calculate the weighted matrix T = (tij )m×n by Equation 23.

tij = (μ′
ij , ν

′
ij ) = wj p̃ij =

(√
1 − (1 − (μ̃ij )2)wj , (̃νij )wj

)
. (23)

Step 5. Determine the border approximation area matrix G = (gj )1×n. The border approx-
imation area (BAA) for each attribute is determined according to Equation 24.

gj =
m∏

i=1

(tij )1/m =
(

m∏
i=1

(μ′
ij )1/m,

m∏
i=1

(ν ′
ij )1/m

)
. (24)

Step 6. Calculate the distance matrix D = (dij )m×n by Equation 25.

dij =

⎧⎪⎨⎪⎩
d(tij , gj ), if tij > gj ,

0, if tij = gj ,

−d(tij , gj ), if tij < gj ,

(25)

where distance measure d is defined as Equation 3.
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Figure 2. Presentation of the upper (G+), lower (G−), and border (G) approximation areas.

Especially, alternative Ai will belong to the border approximation area (G) if
dij = 0, upper approximation area (G+) if dij > 0, and lower approximation area
(G−) if dij < 0. The upper approximation area (G+) is the area that contains the
ideal alternative (A+), whereas the lower approximation area (G−) is the area that
contains the anti-ideal alternative (A−)(see Figure 246). In order for alternative Ai

to be selected as the best in the set, it is necessary for it to have as many attributes
as possible belonging to the upper approximate area (G+).

Step 7. Ranking the alternatives by Qi(i = 1, 2, . . . , m). All the alternatives are ranked
based on the descending order. The most preferred alternative is the one with the
highest value of Qi .

Qi =
n∑

j=1

dij , i = 1, 2, . . . , m; j = 1, 2, . . . , n, (26)

where n is the number of attributes, m is the number of alternatives.

5. TWO NUMERICAL EXAMPLES

Example 1.20 Listed Internet companies play an important role in China’s stock
market. The performance of listed companies affects resources allocation of capital
market and has become a common concern of shareholders, creditors, government
authorities, and other stakeholders. An investment bank wants to invest a sum of
money in Internet stocks. So the investment bank arises three types of experts:
market maker d1, dealer d2, finder d3 to evaluate the potential investment value
with the important degree of λ = (0.2, 0.5, 0.3). They choose four Internet stocks in
which the earnings ratio is higher than other stocks: (1) A1 is SINA; (2) A2 is BIDU;
(3) A3 is NETS; (4) A4 is BABA from three attributes: (1) c1 is the stock market
trend; (2) c2 is the policy direction; (3) c3 is the annual performance. The attributes

International Journal of Intelligent Systems DOI 10.1002/int



PYTHAGOREAN FUZZY CHOQUET INTEGRAL BASED MABAC METHOD 1015

Table I. Pythagorean fuzzy decision matrices P (k)(k = 1, 2, 3).

e1 c1 c2 c3

A1 (0.9,0.3) (0.8,0.1) (0.9,0.2)
A2 (0.5,0.7) (0.4,0.7) (0.8,0.1)
A3 (0.3,0.5) (0.8,0.4) (0.3,0.8)
A4 (0.6,0.7) (0.5,0.6) (0.4,0.2)
e2 c1 c2 c3

A1 (0.7,0.2) (0.9,0.2) (0.7,0.2)
A2 (0.6,0.7) (0.5,0.6) (0.6,0.2)
A3 (0.7,0.1) (0.6,0.5) (0.8,0.4)
A4 (0.6,0.6) (0.5,0.8) (0.6,0.4)
e3 c1 c2 c3

A1 (0.8,0.1) (0.9,0.2) (0.8,0.1)
A2 (0.7,0.6) (0.6,0.4) (0.7,0.2)
A3 (0.9,0.4) (0.8,0.6) (0.7,0.4)
A4 (0.8,0.6) (0.7,0.5) (0.6,0.4)

Table II. The group Pythagorean fuzzy decision matrix P .

e1 c1 c2 c3

A1 (0.77,0.19) (0.88,0.18) (0.77,0.17)
A2 (0.61,0.67) (0.51,0.56) (0.67,0.18)
A3 (0.68,0.27) (0.70,0.51) (0.67,0.48)
A4 (0.66,0.62) (0.56,0.67) (0.56,0.36)

are benefit attributes. The three experts dk(k = 1, 2, 3) evaluate the Internet stocks
Ai(i = 1, 2, 3, 4) with respect to the attributes cj (j = 1, 2, 3) and construct the
following three Pythagorean fuzzy decision matrices P (k) = (p(k)

ij )4×3 as given in
Table I.

Then, we utilize the Algorithm 1 to get the most desirable alternative(s), which
involves the following steps:

Step 1. The prospective alternatives for the decision-making problem with the Pythagorean
fuzzy decision matrix is shown in Table I.

Step 2. Compute the group Pythagorean fuzzy decision matrix P = (pij )4×3 by Equation
17, which is shown in Table II.

Step 3. Because the attributes are benefit attribute, there is no need to normalize.
Step 4. We rearrange the PFNs corresponding to each stock in a descending order by using

Equation 4 or 5, which is shown as follows:
� p̃1σ (1) = (0.88, 0.18), p̃1σ (2) = (0.77, 0.17), p̃1σ (3) = (0.77, 0.19),
� p̃2σ (1) = (0.67, 0.18), p̃2σ (2) = (0.51, 0.56), p̃2σ (3) = (0.61, 0.67),
� p̃3σ (1) = (0.68, 0.27), p̃3σ (2) = (0.70, 0.51), p̃3σ (3) = (0.67, 0.48),
� p̃4σ (1) = (0.56, 0.36), p̃4σ (2) = (0.66, 0.62), p̃4σ (3) = (0.56, 0.67).

Step 5. Suppose following are the fuzzy measures of attribute of C.

μ(c1) = 0.5, μ(c2) = 0.2, μ(c3) = 0.3.

Parameter λ = 0.5 is obtained using Equation 6, and the following are obtained.

μ(c1, c2) = 0.75, μ(c1, c3) = 0.875, μ(c2, c3) = 0.53, μ(c1, c2, c3) = 1.

International Journal of Intelligent Systems DOI 10.1002/int



1016 PENG AND YANG

Step 6. Aggregate the Pythagorean fuzzy information p̃i of alternative Ai(i = 1, 2, 3, 4)
by Equation 19, which is shown as follows:

p̃1 = PFCIA(p̃11, p̃12, p̃13) = ((0.2 − 0) ∗ 0.88 + (0.53 − 0.2) ∗ 0.77

+ (1 − 0.53) ∗ 0.77, (0.2 − 0) ∗ 0.18 + (0.53 − 0.2) ∗ 0.17

+ (1 − 0.53) ∗ 0.19) = (0.7920, 0.1814),

p̃2 = PFCIA(p̃21, p̃22, p̃23) = ((0.3 − 0) ∗ 0.67 + (0.53 − 0.3) ∗ 0.51

+ (1 − 0.53) ∗ 0.61, (0.3 − 0) ∗ 0.18 + (0.53 − 0.3) ∗ 0.56

+ (1 − 0.53) ∗ 0.67) = (0.6050, 0.4977),

p̃3 = PFCIA(p̃31, p̃32, p̃33) = ((0.5 − 0) ∗ 0.68 + (0.75 − 0.5) ∗ 0.70

+ (1 − 0.75) ∗ 0.67, (0.5 − 0) ∗ 0.27

+ (0.75 − 0.5) ∗ 0.51 + (1 − 0.75) ∗ 0.48) = (0.6825, 0.3825),

p̃4 = PFCIA(p̃41, p̃42, p̃43) = ((0.3 − 0) ∗ 0.56 + (0.875 − 0.3) ∗ 0.66

+ (1 − 0.875) ∗ 0.56, (0.3 − 0) ∗ 0.36 + (0.875 − 0.3) ∗ 0.62

+ (1 − 0.875) ∗ 0.67) = (0.6175, 0.5483).

Step 7. Compute the score function s(p̃i) of p̃i by Equation 4, which is shown as follows:

s(p̃1) = 0.5944, s(p̃2) = 0.1183, s(p̃3) = 0.3195, s(p̃4) = 0.0807.

Step 8. Rank all the alternatives Ai(i = 1, 2, 3, 4), we can obtain: A1 > A3 > A2 > A4.
So the most preferred stock is A1(SINA).

If we use the PFCIG operator, we can also get the most preferred stock is
A1(SINA), i.e., it is effective and feasible. Comparing with the existing approaches,
our approach has more capability than [38,39] to model the vagueness in the practical
MAGDM.

Example 2.49 A venture capital company desires to invest in a R&D project. After
the market research and preliminary screening have been conducted, there are three
potential R&D projects {A1, A2, A3} for further evaluation. To reduce risk and in-
crease profits, the company invites three DMs D = {d1, d2, d3} with the important
degree of λ = (0.2, 0.5, 0.3) to evaluate these three projects based on five attributes,
including organizing ability (c1), credit quality (c2), level of research and develop-
ment (c3), profitability (c4), and debt-servicing ability (c5) with the attribute weight
vector w = (0.2, 0.1, 0.3, 0.15, 0.25). The three experts dk(k = 1, 2, 3) evaluate the
R&D projects Ai(i = 1, 2, 3) with respect to the attributes cj (j = 1, 2, 3, 4, 5) and
construct the following three Pythagorean fuzzy decision matrices P (k) = (p(k)

ij )3×5

as listed in Table III.

Then, we utilize Algorithm 2 to get the most desirable alternative(s), which
involves the following steps:
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Table III. Pythagorean fuzzy decision matrices P (k)(k = 1, 2, 3).

e1 c1 c2 c3 c4 c5

A1 (0.9,0.4) (0.9,0.1) (0.9,0.2) (0.8,0.1) (0.9,0.2)
A2 (0.4,0.7) (0.5,0.7) (0.8,0.1) (0.4,0.7) (0.8,0.4)
A3 (0.3,0.5) (0.7,0.4) (0.3,0.8) (0.8,0.5) (0.3,0.8)
e2 c1 c2 c3 c4 c5

A1 (0.7,0.2) (0.7,0.2) (0.7,0.2) (0.7,0.1) (0.8,0.2)
A2 (0.6,0.7) (0.5,0.4) (0.6,0.3) (0.5,0.6) (0.8,0.2)
A3 (0.7,0.3) (0.6,0.5) (0.8,0.4) (0.8,0.4) (0.6,0.8)
e3 c1 c2 c3 c4 c5

A1 (0.8,0.1) (0.6,0.2) (0.8,0.1) (0.8,0.1) (0.6,0.2)
A2 (0.7,0.5) (0.6,0.4) (0.7,0.4) (0.4,0.7) (0.8,0.2)
A3 (0.9,0.3) (0.8,0.6) (0.7,0.5) (0.8,0.5) (0.3,0.7)

Table IV. The group Pythagorean fuzzy decision matrix P .

e1 c1 c2 c3 c4 c5

A1 (0.77,0.21) (0.71,0.18) (0.77,0.17) (0.75,0.10) (0.76,0.20)
A2 (0.59,0.64) (0.53,0.46) (0.67,0.29) (0.45,0.65) (0.80,0.24)
A3 (0.68,0.34) (0.68,0.51) (0.67,0.51) (0.80,0.45) (0.45,0.77)

Table V. The Pythagorean fuzzy decision matrix T .

e1 c1 c2 c3 c4 c5

A1 (0.4056,0.7319) (0.2603,0.8424) (0.4861,0.5877) (0.3415,0.7079) (0.4403,0.6687)
A2 (0.2864,0.9146) (0.1801,0.9253) (0.4046,0.6898) (0.1827,0.9374) (0.4748,0.6999)
A3 (0.3417,0.8059) (0.2453,0.9349) (0.4046,0.8171) (0.3769,0.8871) (0.2345,0.9367)

Step 1. The prospective alternatives for the decision-making problem with the Pythagorean
fuzzy decision matrix is shown in Table III.

Step 2. Compute the group Pythagorean fuzzy decision matrix P = (pij )3×5 by Equation
21 as shown in Table IV.

Step 3. Because the attributes all are benefit attributes, there is no need to normalize.
Step 4. Calculate the elements from the weighted matrix T = (tij )3×5 by Equation 23 as

shown in Table V.
Step 5. Determine the border approximation area matrix G = (gj )1×5. The BAA for each

criterion is determined according to Equation 24 as shown below:

G = ((0.1518, 0.6514), (0.0692, 0.7924), (0.2288, 0.4564),

(0.1055, 0.6586), (0.1872, 0.5474)).

Step 6. Calculate the distance matrix D = (dij )3×5 by Equation 25 as shown in Table VI
Step 7. Compute the Qi(i = 1, 2, 3) by Equation 26, we can obtain

Q1 = 0.9083 > Q2 = −1.1927 > Q3 = −2.2731, i.e., A1 is most preferred
potential R&D project.
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Table VI. The Pythagorean fuzzy decision matrix D.

e1 c1 c2 c3 c4 c5

A1 0.2528 −0.1447 0.3210 0.1729 0.3063
A2 −0.4712 −0.2559 −0.3789 −0.4673 0.3806
A3 −0.3189 −0.3015 −0.5707 −0.4842 −0.5978

If we take the revised TOPSIS method, proposed by Zhang and Xu,17 to instead
of Steps 4–7, we can also obtain the A1 is the most preferred potential R&D project,
i.e., it is effective and feasible in our approach. Meanwhile, if we continue to
aggregate the information of each alternative in different attributes by the PFWA
operator after Step 3 and obtain their score function of each alternative, the preferred
result is also A1. Furthermore, it illustrates that our algorithm is practical.

6. CONCLUSIONS

Although many techniques have been introduced to aggregate Pythagorean
fuzzy information,19,31 all these existing Pythagorean fuzzy aggregation techniques
only consider situations where all the elements in a PFS are independent, and
thus these methods cannot be used to deal with many practical situations where
the data under consideration are correlative; therefore, it is necessary to develop
some new techniques to handle this issue. In this paper, we have used the Choquet
integral to propose some operators for aggregating PFNs with correlative weights.
The prominent characteristic of the operators is that they can not only consider the
importance of the elements or their ordered positions but also reflect the correlations
among the elements or their ordered positions. Most of the existing Pythagorean
fuzzy aggregation operators, such as the PFWA operator,19 PFWG operator, PFOWA
operator, are special cases of our operators. A series of special cases of these two
operators (PFCIA and PFCIG) have been discussed, and corresponding properties
are explored in detail. Later, two approaches to MAGDM with attributes involving
dependent and independent by the PFCIA operator and MABAC are proposed.
Finally, we verify their effectiveness and practicality with two practical MAGDM
problem.

Future studies will extend the proposed method to the MAGDM problems with
hesitant fuzzy sets50 or interval-valued Pythagorean fuzzy set.31
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